Computing with Feedforward Networks of Artificial Biochemical Neurons | SpringerLink
Skip to main content

Computing with Feedforward Networks of Artificial Biochemical Neurons

  • Conference paper
Natural Computing

Abstract

Phosphorylation cycles are a common motif in biological intracellular signaling networks. A phosphorylaton cycle can be modeled as an artificial biochemical neuron, which can be considered as a variant of the artificial neurons used in neural networks. In this way the artificial neural network metaphor can be used to model and study intracellular signaling networks. The question what types of computations can occur in biological intracellular signaling networks leads to the study of the computational power of networks of artificial biochemical neurons. Here we consider the computational properties of artificial biochemical neurons, based on mass-action kinetics. We also study the computational power of feedforward networks of such neurons. As a result, we give an algebraic characterization of the functions computable by these networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cohen, P.: The Regulation of Protein Function by Multisite Phosphorylation, a 25 Year Update. Trends Biochem. Sci. 25(12), 596–601 (2000)

    Article  Google Scholar 

  2. Bray, D.: Bacterial Chemotaxis and the Question of Gain. Proc. Nat. Acad. Sci. 99(1), 123–127 (2002)

    Article  MathSciNet  Google Scholar 

  3. Rao, C., Arkin, A.: Control Motifs for Intracellular Regulatory Networks. Annu. Rev. Biomed. Eng. 3, 391–419 (2001)

    Article  Google Scholar 

  4. Gomperts, B.D., Kramer, I.M., Tatham, P.E.R.: Signal Transduction. Academic Press, London (2002)

    Google Scholar 

  5. Kitano, H.: Systems Biology, A Brief Overview. Science 295(5560), 1662–1664 (2002)

    Article  Google Scholar 

  6. Ball, P.: Chemistry Meets Computing. Nature 406, 118–120 (2000)

    Article  Google Scholar 

  7. Arkin, A., Ross, J.: Computational Functions in Biochemical Reaction Networks. Biophys. J. 67(2), 560–578 (1994)

    Article  Google Scholar 

  8. Bray, D.: Protein Molecules as Computational Elements in Living Cells. Nature 376(6538), 307–312 (1995)

    Article  Google Scholar 

  9. Bhalla, U.: Understanding complex signaling networks through models and metaphors. Progr. Biophys. Mol. Biol. 81, 45–65 (2003)

    Article  Google Scholar 

  10. Hjelmfelt, A., Weinberger, E., Ross, J.: Chemical Implementation of Neural Networks and Turing Machines. Proc. Nat. Acad. Sci. 88(24), 10983–10987 (1991)

    Article  MATH  Google Scholar 

  11. Bartlett, A., Hollot, C., Lin, H.: Root Locations of an Entire Polytope of Polynomials: It Suffces to Check the Edges. Math. Control Signals Systems 1, 61–71 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dixon, M., Webb, E.C.: Enzymes. Longman (1979)

    Google Scholar 

  13. Goldbeter, A., Koshland, D.: An amplified sensitivity arising from covalent modification in biological systems. Proc. Nat. Acad. Sci. 78(11), 6840–6844 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Tokyo

About this paper

Cite this paper

ten Eikelder, H.M.M., Crijns, S.P.M., Steijaert, M.N., Liekens, A.M.L., Hilbers, P.A.J. (2009). Computing with Feedforward Networks of Artificial Biochemical Neurons. In: Suzuki, Y., Hagiya, M., Umeo, H., Adamatzky, A. (eds) Natural Computing. Proceedings in Information and Communications Technology, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-88981-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-88981-6_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-88980-9

  • Online ISBN: 978-4-431-88981-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics