Cooperative Mobile Robot Control Architecture for Lifting and Transportation of Any Shape Payload | SpringerLink
Skip to main content

Cooperative Mobile Robot Control Architecture for Lifting and Transportation of Any Shape Payload

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 112 ))

  • 2228 Accesses

Abstract

This paper addresses cooperative manipulation and transportation of any payload shape, by assembling a group of simple mobile robots (denoted m-bots) into a modular poly-robot (p-bot). The focus is made in this paper on the chosen methodology to obtain sub-optimal positioning of the robots around the payload to lift it and to transport it while maintaining a geometric multi-robot formation. This appropriate positioning is obtained by combining the constraint to ensure Force Closure Grasping (FCG) for stable and safe lifting of the payload and the maximization of the Static Stability Margin (SSM) during the transport. A predefined control law is then used to track a virtual structure in which each elementary robot has to keep the desired position relative to the payload. Simulation results for an object of any shape, described by a parametric curve, are presented. Additional 3D simulation results with a multi-body dynamic software validate our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Souma Alhaj Ali, M.G.: Mobile Robotics, Moving Intelligence (2006)

    Google Scholar 

  2. Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous Mobile Robots. The MIT Press (2004)

    Google Scholar 

  3. Wilcox, B.H., Litwin, T., Biesiadecki, J., Matthews, J., Heverly, M., Morrison, J., Townsend, J., Ahmad, N., Sirota, A., Cooper, B.: Athlete: a cargo handling and manipulation robot for the moon. J. Field Robot. 24(5), 421–434 (2007)

    Google Scholar 

  4. Benzerrouk, A., Adouane, L., Lequievre, L., Martinet, P.: Navigation of multi-robot formation in unstructured environment using dynamical virtual structures. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5589–5594 (2010)

    Google Scholar 

  5. Ijspeert, A.J., Martinoli, A., Billard, A., Gambardella, L.M.: Collaboration through the exploitation of local interactions in autonomous collective robotics: the stick pulling experiment. Auton. Robots 11(2), 149–171 (2001)

    Google Scholar 

  6. Dorigo, D.F.M.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine. In Press (2012)

    Google Scholar 

  7. Adouane, L., Le Fort-Piat, N.: Hybrid behavioral control architecture for the cooperation of minimalist mobile robots. In: 2004 IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04, vol. 4, pp. 3735–3740 (2004)

    Google Scholar 

  8. Yamashita, A., et al.: Cooperative manipulation of objects by multiple mobile robots with tools. In: Proceedings of the 4th Japan-France/2nd Asia-Europe Congress on Mechatronics, pp. 310–315 (1998)

    Google Scholar 

  9. Bay, J.S.: Design of the army-ant cooperative lifting robot. IEEE Robot. & Autom. Mag. 1, 36–43 (1995)

    Article  Google Scholar 

  10. Abou-Samah, M.: Optimal configuration selection for a cooperating system of mobile manipulators. In: 2002 ASME Design Engineering Technical Conferences (2002)

    Google Scholar 

  11. Kernbach, S., et al.: Symbiotic robot organisms: REPLICATOR and SYMBRION projects. In: Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, pp. 62–69. New York (2008)

    Google Scholar 

  12. Sahbani, A., El-khoury, S., Bidaud, P.: An overview of 3D object grasp synthesis algorithms. Robot. Auton. Syst. 60(3), 326–336 (2012)

    Google Scholar 

  13. El-Khoury, S., Sahbani, A., Bidaud, P.: 3D objects grasps synthesis: a survey. In: 13th World Congress in Mechanism and Machine Science. Guanajuato (2011)

    Google Scholar 

  14. Ding, D., et al.: Computing 3-D optimal form-closure grasps. In: IEEE International Conference on Robotics and Automation. Proceedings. ICRA, vol. 4, pp. 3573–3578 (2000)

    Google Scholar 

  15. Li, J.-W., Jin, M.-H., Liu, H.: A new algorithm for three-finger force-closure grasp of polygonal objects. In: IEEE International Conference on Robotics and Automation, 2003. Proceedings. ICRA, vol. 2, pp. 1800–1804 (2003)

    Google Scholar 

  16. Roa, M.A., Suarez, R.: Finding locally optimum force-closure grasps. Robot. Comput. Integr. Manuf. 25(3), 536–544 (2009)

    Article  Google Scholar 

  17. Liu, Y.H.: Qualitative test and force optimization of 3-D frictional form closure grasps using linear programming. IEEE Trans. Robot. Autom. 15(1) (1999)

    Google Scholar 

  18. Nguyen, D.: Constructing stable grasps in 3D. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 234–239 (1987)

    Google Scholar 

  19. Fischer, M., van der Smagt, P., Hirzinger, G.: Learning techniques in a dataglove based telemanipulation system for the DLR hand. In: 1998 IEEE International Conference on Robotics and Automation, 1998. Proceedings, vol. 2, pp. 1603–1608 (1998)

    Google Scholar 

  20. Ekvall, S., Kragic, D.: Interactive grasp learning based on humain demonstration. In: IEEE/RSJ International Conference on Robotics and Automation. New Orleans (2004)

    Google Scholar 

  21. Kyota, F., et al.: Detection and evaluation of grasping positions for autonomous agents. In: International Conference on Cyberworlds, 2005, pp. 453–460 (2005)

    Google Scholar 

  22. Aarno, D., et al.: Early reactive grasping with second order 3D feature relations. In: Lee, S., Suh, I.H., Kim, M.S. (eds.) Recent Progress in Robotics: Viable Robotic Service to Human, pp. 91–105. Springer, Berlin (2008)

    Google Scholar 

  23. Hueser, M., Baier, T., Zhang, J.: Learning of demonstrated grasping skills by stereoscopic tracking of human head configuration. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA, pp. 2795–2800 (2006)

    Google Scholar 

  24. Orin, D.E., Mcghee, R.B., Jaswa, V.C.: Interactive compute-control of a six-legged robot vehicle with optimization of stability, terrain adaptibility and energy. In: 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes, vol. 15, pp. 382–391 (1976)

    Google Scholar 

  25. Papadopoulos, E.G., Rey, D.A.: A new measure of tipover stability margin for mobile manipulators. In: 1996 IEEE International Conference on Robotics and Automation, 1996. Proceedings, vol. 4, pp. 3111–3116 (1996)

    Google Scholar 

  26. Estremera, J., Cobano, J.A., Gonzalez de Santos, P.: Continuous free-crab gaits for hexapod robots on a natural terrain with forbidden zones: an application to humanitarian demining. Robot. Auton. Syst. 58(5), 700–711 (2010)

    Article  Google Scholar 

  27. Sasaki, J., Ota, J., Yoshida, E., Kurabayashi, D., Arai, T.: Cooperating grasping of a large object by multiple mobile robots. In: 1995 IEEE International Conference on Robotics and Automation, 1995. Proceedings, vol. 1, pp. 1205–1210 (1995)

    Google Scholar 

  28. Adouane, L.: Architectures de controle comportementales et reactives pour la cooperation d’un groupe de robots mobiles. Université de Franche-Comté, PhD Thesis Report (2005)

    Google Scholar 

  29. McGhee, R.B., Frank, A.A.: On the stability properties of quadruped creeping gaits. Math. Biosci. 3, 331–351 (1968)

    Article  MATH  Google Scholar 

  30. Grand, C., et al.: Stability and traction optimization of a reconfigurable wheel-legged robot. Int. J. Robot. Res. 23(10–11), 1041–1058 (2004)

    Article  Google Scholar 

  31. Queiroz, C.: A study on static gaits for a four legged robot. In: International Conference CONTROL’2000. Cambridge, UK (2000)

    Google Scholar 

  32. Van den Broek, T.H.A., et al.: Formation control of unicycle mobile robots: a virtual structure approach. In: Proceedings of the 48th IEEE Conference on Decision and Control, held jointly with the 2009 28th Chinese Control Conference. CDC/CCC, pp. 8328–8333 (2009)

    Google Scholar 

  33. Hichri, B., Fauroux, J.C., Adouane, L., Mezouar, Y., Doroftei, I.: Design of collaborative, cross and carry mobile robots (C3Bots). Adv. Mater. Res. 837, 588–593 (2013)

    Article  Google Scholar 

  34. Hichri, B., Fauroux, J.C., Adouane, L., Doroftei, I., Mezouar, Y.: Lifting mechanism for payload transport by collaborative mobile robots. In: Flores, P., Viadero, F. (eds.) New Trends in Mechanism and Machine Science, pp. 157–165. Springer (2015)

    Google Scholar 

  35. Yoshikawa, T.: Multifingered robot hands: control for grasping and manipulation. Annu. Rev. Control 34(2), 199–208 (2010)

    Article  Google Scholar 

  36. Zheng, Y., Qian, W.-H.: Limiting and minimizing the contact forces in multifingered grasping. Mech. Mach. Theory 41(10), 1243–1257 (2006)

    Article  MATH  Google Scholar 

  37. Wang, Z., Ding, X., Rovetta, A., Giusti, A.: Mobility analysis of the typical gait of a radial symmetrical six-legged robot. Mechatronics 21(7), 1133–1146 (2011)

    Article  Google Scholar 

  38. Simulation results: https://www.dropbox.com/sh/d6plmdqmnizm8j6/AABy52fbl65lhC870ZBdjdQfa

Download references

Acknowledgments

The C\(^3\)Bots project acknowledges the following entities: LABEX IMobS3 Innovative Mobility: Smart and Sustainable Solutions, the French National Centre for Scientific Research (CNRS), Auvergne Regional Council and the European funds of regional development (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hichri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this paper

Cite this paper

Hichri, B., Adouane, L., Fauroux, JC., Mezouar, Y., Doroftei, I. (2016). Cooperative Mobile Robot Control Architecture for Lifting and Transportation of Any Shape Payload. In: Chong, NY., Cho, YJ. (eds) Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol 112 . Springer, Tokyo. https://doi.org/10.1007/978-4-431-55879-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55879-8_13

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55877-4

  • Online ISBN: 978-4-431-55879-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics