Isomorphism between Strong Fuzzy Relational Graphs Based on k-Formulae | SpringerLink
Skip to main content

Isomorphism between Strong Fuzzy Relational Graphs Based on k-Formulae

  • Conference paper
Graph Based Representations in Pattern Recognition

Part of the book series: Computing Supplement ((COMPUTING,volume 12))

Abstract

We present a new graph matching approach based on 1D information. Each node of the graphs represents a fuzzy region (fuzzy segmentation step). Each couple of nodes is linked by a relational histogram which can be assumed to the attraction of two regions following a set of directions. The attraction is computed by a continuous function, depending on the distance of the confronted objects. Each case of the histogram corresponds to a particular direction. Then, relational graph computed from strong scenes are matched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barni, M., Cappellini, V., Mecocci, A.: Comments on “A Possibilistic Approach to Clustering”. IEEE Trans. Fuzzy Systems 4, 393–396 (1996).

    Article  Google Scholar 

  2. Berztiss, A. T.: A backtrack procedure for isomorphism of directed graphs. Assoc. Comput. Mach. 20, 365–377 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bezdek, J. C.: Pattern recognition with fuzzy objective function algorithms. New York: Plenum Press, 1981.

    Book  MATH  Google Scholar 

  4. Dave, R. N.: Characterization and detection of noise in clustering. Pattern Rec. Lett. 12, 657–664 (1991).

    Article  Google Scholar 

  5. Dubois, D., Jaulent, M. C.: A general approach to parameter evaluation in fuzzy digital pictures. Pattern Rec. Lett. 6, 251–261 (1987).

    Article  MATH  Google Scholar 

  6. Dhérété, P., Wendling, L., Desachy, J.: Fuzzy segmentation and astronomical images interpretation. ICLAP’95-IAPR, Lecture Notes in Computer Science, vol. 974, pp 21–27. Berlin Heidelberg New York Tokyo: Springer 1995.

    Google Scholar 

  7. Jantzen, J., Ring, P.: Image segmentation based on scaled membership functions. 2nd IEEE Conference on Fuzzy Systems 2, pp. 714–718 (1993).

    Google Scholar 

  8. Krishnapuram, R., Keller, J. M., Ma, Y.: Quantitative analysis of properties and spatial relations of fuzzy images regions, IEEE Trans. Fuzzy System 1, 222–233 (1993).

    Article  Google Scholar 

  9. Krishnapuram, R.: Generation of membership functions via possibilistic clustering. 3rd IEEE Conf. Fuzzy System 3, 902–908 (1994).

    Article  Google Scholar 

  10. Keller, J. M., Carpenter, C. L.: Image segmentation in the presence of uncertainty. Int. J. Intell. Syst. 5, 193–208 (1990).

    Article  MATH  Google Scholar 

  11. Krishnapuram, R.: Fuzzy clustering methods in computer vision. EUFIT’93, pp. 720–730 (1993).

    Google Scholar 

  12. Krishnapuram, R., Keller, J. M.: A possibilistic approach to clustering. IEEE Trans Fuzzy Syst. 1, 98–110(1993).

    Article  Google Scholar 

  13. Krishnapuram, R., Keller, J. M.: The possibilistic C-means algorithm: insights and recommendations. IEEE Trans. Fuzzy Systems 4, 385–393 (1996).

    Article  Google Scholar 

  14. Horowitz, S. L., Pavlidis, T.: Picture segmentation by a directed split and merge procedure. 2nd International Conference on Pattern Recognition, pp. 424–433 (1974).

    Google Scholar 

  15. Matsakis, P., Wendling, L., Desachy, J.: Représentation de la position relative d’objets 2D au moyen d’un histogramme de forces. Rev. Trait. Signal 4, 63–76 (1998).

    Google Scholar 

  16. Miyajima, K., Ralescu, A.: Spatial organization in 2D segmented images: representation and recognition of primitive spatial relations. Fuzzy Sets Systems 65, 225–236 (1994).

    Article  Google Scholar 

  17. Rosenfeld, A.: Fuzzy geometry: an overview. First IEEE Conf. Fuzzy Systems, pp. 113–118 (1992).

    Google Scholar 

  18. Rosenfeld, A., Hummel, R., Zucker, S.: Scene labelling by relaxation operations. IEEE Trans. Syst. Man Cybernetics 6, 420–433 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  19. Ruspini, E. H.: A new approach to clustering. Inf. Control 15, 22–32 (1969).

    Article  MATH  Google Scholar 

  20. Wendling, L.: Segmentation floue appliquée à la reconnaissance d’objets dans les images numériques. Ph.D. thesis, Université Paul Sabatier, Toulouse, 1997.

    Google Scholar 

  21. Wendling, L., Pariès, A., Desachy, J.: Pattern recognition by splitting images into trees of fuzzy regions. Int. J. Intell. Data Anal. 1(2) (1997). http://www-east.elsevier.com/ida

    Google Scholar 

  22. H. J. Zimmerman, P. Zysno, Quantifying vagueness in decision models. Eur. J. Oper. Res. 22, 148–158 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Wendling, L., Desachy, J. (1998). Isomorphism between Strong Fuzzy Relational Graphs Based on k-Formulae. In: Jolion, JM., Kropatsch, W.G. (eds) Graph Based Representations in Pattern Recognition. Computing Supplement, vol 12. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6487-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6487-7_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83121-2

  • Online ISBN: 978-3-7091-6487-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics