Mehrwertige Logik und unscharfe Mengen | SpringerLink
Skip to main content

Mehrwertige Logik und unscharfe Mengen

  • Chapter
Fuzzy Theorie und Stochastik

Part of the book series: Computational Intelligence ((CI))

Zusammenfassung

Schon frühzeitig in der (relativ kurzen) Geschichte der Theorie der unscharfen Mengen ist es klar geworden, dass es einen sehr engen Zusammenhang zwischen dieser Theorie und der mehrwertigen Logik gibt. In der Anfangsphase war es dabei insbesondere die Beziehung zu der „fuzzy logic“ im damaligen Verständnis dieses Wortes: als einer Art von mehrwertiger Logik mit besonderer Beziehung zu Problemen der Schaltalgebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 4806
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10691
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literaturverzeichnis

  1. Bellmann, R. — Giertz, M.: On the analytic formalism of the theory of fuzzy sets, Information Sciences 5, S. 149–156, 1973.

    Article  Google Scholar 

  2. Chang, C.C. — Keisler, H.J.: Model Theory. North Holland Publ. Comp., Amsterdam 1973.

    Google Scholar 

  3. Chapin, E.W.: Set-valued set theory. I-II, Notre Dame Journal Formal Logic 15, S. 614–634; 16, S. 255–267, 1974–75.

    Google Scholar 

  4. Dombi, J.: A general class of fuzzy operators, the DeMorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators, Fuzzy Sets and Systems 8, S. 149–163, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  5. Giles, R.: Lukasiewicz logic and fuzzy set theory. Internat. J. Man-Machine Studies 8, S. 313–327, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  6. Giles, R.: A formal system for fuzzy reasoning. Fuzzy Sets and Systems 2, S. 233–257, 1979.

    Google Scholar 

  7. Gödel, K.: Zum intuitionistischen Aussagenkalkül, Anzeiger Akademie der Wissenschaften Wien, Math.-naturwiss. Klasse 69, S. 65–66, 1932; also: Ergebnisse eines mathematischen Kolloquiums 4 40, 1933.

    Google Scholar 

  8. Gottwald, S.: Untersuchungen zur Mehrwertigen Mengenlehre. I-III, Math. Nachrichten 72, S. 297–303; 77, S. 329–363; 79, S. 207–217, 197677.

    Google Scholar 

  9. Gottwald, S.: Set theory for fuzzy sets of higher level, Fuzzy Sets and Systems 2, S. 125–151, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  10. Gottwald, S.: Mehrwertige Logik. Eine Einführung in Theorie und Anwendungen. Akademie-Verlag, Berlin 1989.

    MATH  Google Scholar 

  11. Gottwald, S.: Fuzzy Sets and Fuzzy Logic. Vieweg, Wiesbaden 1993.

    Book  MATH  Google Scholar 

  12. Gottwald, S.: An approach to handle partially sound rules of inference. In: Bouchon-Meunier, B.; Yager, R. R.; Zadeh, L. A. (EDS.): Advances in Intelligent Computing — IPMU ‘84, Selected Papers, Lecture Notes Computer Sci., vol. 945, Springer, Berlin, S. 380–388, 1995.

    Google Scholar 

  13. Gottwald, S.: Many-Valued Logic. [Extended and updated English version of [10] — 1999 (erscheint).

    Google Scholar 

  14. Hamacher, H.: Ober logische Aggregationen nicht-binär explizierter Entscheidungskriterien. Rita G. Fischer Verlag, Frankfurt/Main 1978.

    Google Scholar 

  15. Hohle, U. M-valued sets and sheaves over integral commutative CLmonoids, in: S.E. Rodabaugh/E.P. Klement/U. Hohle (eds.), Applications of Category Theory to Fuzzy Subsets, Kluwer Acad. Publ., Dordrecht, S. 33–72, 1992.

    Google Scholar 

  16. Novak, V. - Perfilieva, 1. - Mockor, J.: Mathematical Principles of Fuzzy Logic. From Theory to Applications. Kluwer Acad. Publ., Boston 1999.

    Google Scholar 

  17. Rescher, N.: Many-Valued Logic. McGraw Hill, New York 1969.

    MATH  Google Scholar 

  18. Rosser, J.B. - Turquette, A.R.: Many-Valued Logics. North Holland Publ. Comp., Amsterdam 1952.

    Google Scholar 

  19. Schweizer, B.–Sklar, A.: Associative functions and statistical triangle inequalities, Publicationes Mathematicae Debrecen 8, S. 169–186, 1961.

    MathSciNet  MATH  Google Scholar 

  20. Thole, U.–Zimmermann, H.J.–ZYSNO, P.: On the suitability of minimum and product operators for the intersection of fuzzy sets, Fuzzy Sets and Systems 2, S. 167–180, 1979.

    Article  MATH  Google Scholar 

  21. Weber, S.: A general concept of fuzzy connectives, negatives and implications based on t-norms and t-conorms, Fuzzy Sets and Systems 11, S. 115–134, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  22. Weidner, A.J.: Fuzzy sets and Boolean-valued universes, Fuzzy Sets and Systems 6, S. 61–72, 1981.

    Google Scholar 

  23. Yager, R.R.: On a general class of fuzzy connectives. Fuzzy Sets and Systems 4, S. 235–242, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  24. Zadeh, L.A.: Fuzzy sets, Information and Control 8, S. 338–353, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  25. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. I, Information Sciences 8, S. 199–250, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang Jinwen: A unified treatment of fuzzy set theory and Boolean-valued set theory–fuzzy set structures and normal fuzzy set structures, Journal Mathematical Analysis Applications 76, S. 297–301, 1980.

    Article  Google Scholar 

  27. Zhang Jinwen: Between fuzzy set theory and Boolean valued set theory, in: M.M. Gupta/E. Sanchez (eds.), Fuzzy Information and Decision Processes. North Holland Publ. Comp., Amsterdam, S. 143–147, 1982.

    Google Scholar 

  28. Zimmermann, H.J. — Zysno, P.: Latent connectives in human decision making, Fuzzy Sets and Systems 4, S. 37–51, 1980.

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Gottwald, S. (1999). Mehrwertige Logik und unscharfe Mengen. In: Seising, R. (eds) Fuzzy Theorie und Stochastik. Computational Intelligence. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-10120-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-10120-8_6

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-05682-7

  • Online ISBN: 978-3-663-10120-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics