Zusammenfassung
Schon frühzeitig in der (relativ kurzen) Geschichte der Theorie der unscharfen Mengen ist es klar geworden, dass es einen sehr engen Zusammenhang zwischen dieser Theorie und der mehrwertigen Logik gibt. In der Anfangsphase war es dabei insbesondere die Beziehung zu der „fuzzy logic“ im damaligen Verständnis dieses Wortes: als einer Art von mehrwertiger Logik mit besonderer Beziehung zu Problemen der Schaltalgebra.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Literaturverzeichnis
Bellmann, R. — Giertz, M.: On the analytic formalism of the theory of fuzzy sets, Information Sciences 5, S. 149–156, 1973.
Chang, C.C. — Keisler, H.J.: Model Theory. North Holland Publ. Comp., Amsterdam 1973.
Chapin, E.W.: Set-valued set theory. I-II, Notre Dame Journal Formal Logic 15, S. 614–634; 16, S. 255–267, 1974–75.
Dombi, J.: A general class of fuzzy operators, the DeMorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators, Fuzzy Sets and Systems 8, S. 149–163, 1982.
Giles, R.: Lukasiewicz logic and fuzzy set theory. Internat. J. Man-Machine Studies 8, S. 313–327, 1976.
Giles, R.: A formal system for fuzzy reasoning. Fuzzy Sets and Systems 2, S. 233–257, 1979.
Gödel, K.: Zum intuitionistischen Aussagenkalkül, Anzeiger Akademie der Wissenschaften Wien, Math.-naturwiss. Klasse 69, S. 65–66, 1932; also: Ergebnisse eines mathematischen Kolloquiums 4 40, 1933.
Gottwald, S.: Untersuchungen zur Mehrwertigen Mengenlehre. I-III, Math. Nachrichten 72, S. 297–303; 77, S. 329–363; 79, S. 207–217, 197677.
Gottwald, S.: Set theory for fuzzy sets of higher level, Fuzzy Sets and Systems 2, S. 125–151, 1979.
Gottwald, S.: Mehrwertige Logik. Eine Einführung in Theorie und Anwendungen. Akademie-Verlag, Berlin 1989.
Gottwald, S.: Fuzzy Sets and Fuzzy Logic. Vieweg, Wiesbaden 1993.
Gottwald, S.: An approach to handle partially sound rules of inference. In: Bouchon-Meunier, B.; Yager, R. R.; Zadeh, L. A. (EDS.): Advances in Intelligent Computing — IPMU ‘84, Selected Papers, Lecture Notes Computer Sci., vol. 945, Springer, Berlin, S. 380–388, 1995.
Gottwald, S.: Many-Valued Logic. [Extended and updated English version of [10] — 1999 (erscheint).
Hamacher, H.: Ober logische Aggregationen nicht-binär explizierter Entscheidungskriterien. Rita G. Fischer Verlag, Frankfurt/Main 1978.
Hohle, U. M-valued sets and sheaves over integral commutative CLmonoids, in: S.E. Rodabaugh/E.P. Klement/U. Hohle (eds.), Applications of Category Theory to Fuzzy Subsets, Kluwer Acad. Publ., Dordrecht, S. 33–72, 1992.
Novak, V. - Perfilieva, 1. - Mockor, J.: Mathematical Principles of Fuzzy Logic. From Theory to Applications. Kluwer Acad. Publ., Boston 1999.
Rescher, N.: Many-Valued Logic. McGraw Hill, New York 1969.
Rosser, J.B. - Turquette, A.R.: Many-Valued Logics. North Holland Publ. Comp., Amsterdam 1952.
Schweizer, B.–Sklar, A.: Associative functions and statistical triangle inequalities, Publicationes Mathematicae Debrecen 8, S. 169–186, 1961.
Thole, U.–Zimmermann, H.J.–ZYSNO, P.: On the suitability of minimum and product operators for the intersection of fuzzy sets, Fuzzy Sets and Systems 2, S. 167–180, 1979.
Weber, S.: A general concept of fuzzy connectives, negatives and implications based on t-norms and t-conorms, Fuzzy Sets and Systems 11, S. 115–134, 1983.
Weidner, A.J.: Fuzzy sets and Boolean-valued universes, Fuzzy Sets and Systems 6, S. 61–72, 1981.
Yager, R.R.: On a general class of fuzzy connectives. Fuzzy Sets and Systems 4, S. 235–242, 1980.
Zadeh, L.A.: Fuzzy sets, Information and Control 8, S. 338–353, 1965.
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. I, Information Sciences 8, S. 199–250, 1975.
Zhang Jinwen: A unified treatment of fuzzy set theory and Boolean-valued set theory–fuzzy set structures and normal fuzzy set structures, Journal Mathematical Analysis Applications 76, S. 297–301, 1980.
Zhang Jinwen: Between fuzzy set theory and Boolean valued set theory, in: M.M. Gupta/E. Sanchez (eds.), Fuzzy Information and Decision Processes. North Holland Publ. Comp., Amsterdam, S. 143–147, 1982.
Zimmermann, H.J. — Zysno, P.: Latent connectives in human decision making, Fuzzy Sets and Systems 4, S. 37–51, 1980.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer Fachmedien Wiesbaden
About this chapter
Cite this chapter
Gottwald, S. (1999). Mehrwertige Logik und unscharfe Mengen. In: Seising, R. (eds) Fuzzy Theorie und Stochastik. Computational Intelligence. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-10120-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-663-10120-8_6
Publisher Name: Vieweg+Teubner Verlag, Wiesbaden
Print ISBN: 978-3-528-05682-7
Online ISBN: 978-3-663-10120-8
eBook Packages: Springer Book Archive