A Sentiment Analysis Software Framework for the Support of Business Information Architecture in the Tourist Sector | SpringerLink
Skip to main content

A Sentiment Analysis Software Framework for the Support of Business Information Architecture in the Tourist Sector

  • Chapter
  • First Online:
Transactions on Large-Scale Data- and Knowledge-Centered Systems XLV

Abstract

In recent years, the increased use of digital tools within the Peruvian tourism industry has created a corresponding increase in revenues. However, both factors have caused increased competition in the sector that in turn puts pressure on small and medium enterprises’ (SME) revenues and profitability. This study aims to apply neural network based sentiment analysis on social networks to generate a new information search channel that provides a global understanding of user trends and preferences in the tourism sector. A working data-analysis framework will be developed and integrated with tools from the cloud to allow a visual assessment of high probability outcomes based on historical data, to help SMEs estimate the number of tourists arriving and places they want to visit, so that they can generate desirable travel packages in advance, reduce logistics costs, increase sales, and ultimately improve both quality and precision of customer service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Confederación Nacional de Instituciones Empresariales Privadas - CONFIEP (2019). Turismo en Perú (21 Noviembre del 2019). Recuperado de https://www.confiep.org.pe/noticias/economia/turismo-en-peru/

  2. Zapata, G., Murga, J., Raymundo, C., Dominguez, F., Moguerza, J.M., Alvarez, J.M.: Business information architecture for successful project implementation based on sentiment analysis in the tourist sector. J. Intell. Inf. Syst. 53(3), 563–585 (2019). https://doi.org/10.1007/s10844-019-00564-x

    Article  Google Scholar 

  3. Zabha, N., Ayop, Z., Anawar, S., Erman, H., Zainal, Z.: Developing Cross-lingual Sentiment Analysis of Malay Twitter Data Using Lexicon-based Approach. Int. J. Adv. Comput. Sci. Appl. (2019). https://doi.org/10.14569/IJACSA.2019.0100146

  4. Kincl, T., Novák, M., Pribil, J.: Improving sentiment analysis performance on morphologically rich languages: language and domain independent approach. Comput. Speech Lang. 56, 36–51 (2019). https://doi.org/10.1016/j.csl.2019.01.001

    Article  Google Scholar 

  5. Fernández-Gavilanes, M., Juncal-Martńnez, J., Méndez, S., Costa-Montenegro, E., Castaño, F.: Differentiating users by language and location estimation in sentiment analisys of informal text during major public events. Expert Syst. Appl. 117 (2018). https://doi.org/10.1016/j.eswa.2018.09.007

  6. Zvarevashe, K., Olugbara, O.: A framework for sentiment analysis with opinion mining of hotel reviews, pp. 1–4 (2018). https://doi.org/10.1109/ICTAS.2018.8368746

  7. Gunasekar, S., Sudhakar, S.: Does hotel attributes impact customer satisfaction: a sentiment analysis of online reviews. J. Glob. Scholars Mark. Sci. 29, 180–195 (2019). https://doi.org/10.1080/21639159.2019.1577155

    Article  Google Scholar 

  8. Anitsal, M.M., Anitsal, I., Anitsal, S.: Is your business sustainable? A sentiment analysis of air passengers of top 10 US-based airlines. J. Glob. Scholars Mark. Sci. 29, 25–41 (2019). https://doi.org/10.1080/21639159.2018.1552532

    Article  Google Scholar 

  9. Alaei, A., Becken, S., Stantic, B.: Sentiment analysis in tourism: capitalizing on big data. J. Travel Res. 58, 004728751774775 (2017). https://doi.org/10.1177/0047287517747753

    Article  Google Scholar 

  10. Ducange, P., Fazzolari, M., Petrocchi, M., Vecchio, M.: An effective Decision Support System for social media listening based on cross-source sentiment analysis models. Eng. Appl. Artif. Intell. 78, 71–85 (2019). https://doi.org/10.1016/j.engappai.2018.10.014

    Article  Google Scholar 

  11. Suresh, H., Gladston, S.: An innovative and efficient method for Twitter sentiment analysis. Int. J. Data Min. Model. Manage. 11, 1 (2019). https://doi.org/10.1504/IJDMMM.2019.096543

    Article  Google Scholar 

  12. Vural, A., Cambazoglu, B., Karagoz, P.: Sentiment-focused web crawling. ACM Trans. Web 8, 2020–2024 (2012). https://doi.org/10.1145/2396761.2398564

    Article  Google Scholar 

  13. Haruechaiyasak, C., Kongthon, A., Palingoon, P., Trakultaweekoon, K.: S-sense: a sentiment analysis framework for social media sensing. In: IJCNLP 2013 Workshop on Natural Language Processing for Social Media (SocialNLP), pp. 6–13 (2013)

    Google Scholar 

  14. Zafra, S.M., Martín-Valdivia, M., Martínez-Cámara, E., López, L.: Studying the scope of negation for spanish sentiment analysis on Twitter. IEEE Trans. Affect. Comput. PP, 1 (2017). https://doi.org/10.1109/TAFFC.2017.2693968

  15. Cai, K., Spangler, W., Chen, Y., Li, Z.: Leveraging sentiment analysis for topic detection. Web Intell. Agent Syst. 8, 291–302 (2010). https://doi.org/10.3233/WIA-2010-0192

    Article  Google Scholar 

  16. You, Q.: Sentiment and emotion analysis for social multimedia: methodologies and applications, pp. 1445–1449 (2016). https://doi.org/10.1145/2964284.2971475

  17. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61 (2014). https://doi.org/10.1016/j.neunet.2014.09.003

  18. Sze, V., Chen, Y.-H., Yang, T.-J., Joel, E.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105 (2017). https://doi.org/10.1109/JPROC.2017.2761740

  19. Rani, S., Kumar, P.: deep learning based sentiment analysis using convolution neural network. Arab. J. Sci. Eng. 44(4), 3305–3314 (2018). https://doi.org/10.1007/s13369-018-3500-z

    Article  Google Scholar 

  20. Alharbi, A.S.M., de Doncker, E.: Twitter sentiment analysis with a deep neural network: an enhanced approach using user behavioral information. Cogn. Syst. Res. (2018). https://doi.org/10.1016/j.cogsys.2018.10.001

    Article  Google Scholar 

  21. Du, C., Lei, H.: Sentiment analysis method based on piecewise convolutional neural network and generative adversarial network. Int. J. Comput. Commun. Control 4, 7–20 (2019). https://doi.org/10.15837/ijccc.2019.1.3374

  22. Ju, H., Yu, H.: Sentiment classification with convolutional neural network using multiple word representations 1–7 (2018). https://doi.org/10.1145/3164541.3164610

  23. Du, T., Huang, Y., Wu, X., Chang, H.: Multi-attention network for sentiment analysis. In: NLPIR 2018: Proceedings of the 2nd International Conference on Natural Language Processing and Information Retrieval, pp. 49–54 (2018). https://doi.org/10.1145/3278293.3278295

  24. Zapata, G., Murga, J., Raymundo, C., Alvarez, J., Dominguez, F.: Predictive model based on sentiment analysis for Peruvian SMEs in the sustainable tourist sector. In: IC3K 2017 - Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, vol. 3, pp. 232–240 (2017)

    Google Scholar 

  25. Kotzias, D., et al.: From group to individual labels using deep features. In: KDD (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Raymundo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murga, J. et al. (2020). A Sentiment Analysis Software Framework for the Support of Business Information Architecture in the Tourist Sector. In: Hameurlain, A., et al. Transactions on Large-Scale Data- and Knowledge-Centered Systems XLV. Lecture Notes in Computer Science(), vol 12390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62308-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62308-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62307-7

  • Online ISBN: 978-3-662-62308-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics