Abstract
Understanding how people view and interact with autonomous vehicles is important to guide future directions of research. One such way of aiding understanding is through simulations of virtual environments involving people and autonomous vehicles. We present a simulation model that incorporates people and autonomous vehicles in a shared urban space. The model is able to simulate many thousands of people and vehicles in real-time. This is achieved by use of GPU hardware, and through a novel linear program solver optimized for large numbers of problems on the GPU. The model is up to 30 times faster than the equivalent multi-core CPU model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barut, O., Haciomeroglu, M., Sezer, E.A.: Combining GPU-generated linear trajectory segments to create collision-free paths for real-time ambient crowds. Graph. Models 99, 31–45 (2018)
Bleiweiss, A.: Multi agent navigation on the GPU. White paper, GDC, vol. 9 (2009)
Charlton, J., Gonzalez, L.R.M., Maddock, S., Richmond, P.: Fast simulation of crowd collision avoidance. In: Gavrilova, M., Chang, J., Thalmann, N.M., Hitzer, E., Ishikawa, H. (eds.) CGI 2019. LNCS, vol. 11542, pp. 266–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22514-8_22
Charlton, J., Maddock, S., Richmond, P.: Two-dimensional batch linear programming on the GPU. J. Parallel Distrib. Comput. 126, 152–160 (2019)
Richmond, P.: Flame GPU technical report and user guide. Department of Computer Science Technical Report CS-11-03, University of Sheffield (2011)
Pettré, J., Kallmann, M., Lin, M.C.: Motion planning and autonomy for virtual humans. In: ACM SIGGRAPH 2008 Classes, SIGGRAPH 2008, New York, NY, USA, pp. 42:1–42:31. ACM (2008)
Pettré, J., Pelechano, N.: Introduction to Crowd Simulation. In: Bousseau, A., Gutierrez, D. (eds.) EG 2017 - Tutorials. The Eurographics Association (2017)
Thalmann, D.: Populating virtual environments with crowds. In: Proceedings of the 2006 ACM International Conference on Virtual Reality Continuum and Its Applications, VRCIA 2006, New York, NY, USA, p. 11. ACM (2006). Event-place: Hong Kong, China
Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd simulation. In: ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia 2009, New York, NY, USA, pp. 122:1–122:8. ACM (2009)
Fickett, M., Zarko, L.: GPU continuum crowds. CIS Final Project Final report, University of Pennsylvania (2007)
Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)
Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17, 760–772 (1998)
Blue, V., Adler, J.: Emergent fundamental pedestrian flows from cellular automata microsimulation \(|\) request PDF. Transp. Res. Rec.: J. Transp. Res. Board 1644, 29–36 (1998)
Blue, V., Adler, J.: Cellular automata microsimulation of bidirectional pedestrian flows. Transp. Res. Rec.: J. Transp. Res. Board 1678, 135–141 (1999)
Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. Biosystems 51, 123–143 (1999)
Karmakharm, T., Richmond, P.: Agent-based large scale simulation of pedestrians with adaptive realistic navigation vector fields. EG UK Theory Pract. Comput. Graph. 10, 67–74 (2010)
Richmond, P., Romano, D.M.: A high performance framework for agent based pedestrian dynamics on GPU hardware. In: Proceedings of EUROSIS ESM, vol. 2008 (2008)
Abe,Y., Yoshiki, M.: Collision avoidance method for multiple autonomous mobile agents by implicit cooperation. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180), vol. 3, pp. 1207–1212, October 2001
Kluge, B., Prassler, E.: Recursive probabilistic velocity obstacles for reflective navigation. In: Yuta, S., Asama, H., Prassler, E., Tsubouchi, T., Thrun, S. (eds.) Field and Service Robotics: Recent Advances in Reserch and Applications. Springer Tracts in Advanced Robotics, pp. 71–79. Springer, Heidelberg (2006). https://doi.org/10.1007/10991459_8
Fulgenzi, C., Spalanzani, A., Laugier, C.: Dynamic obstacle avoidance in uncertain environment combining PVOs and occupancy grid. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, pp. 1610–1616, IEEE, April 2007
Berg, J.V.D., Lin, M., Manocha, D.: Reciprocal Velocity Obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 1928–1935, May 2008
Guy, S.J., et al.: ClearPath: highly parallel collision avoidance for multi-agent simulation. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2009, New York, NY, USA, pp. 177–187. ACM (2009)
He, L., Pan, J., Narang, S., Wang, W., Manocha, D.: Dynamic group behaviors for interactive crowd simulation. arXiv:1602.03623 [cs], February 2016
Yang, Z., Pan, J., Wang, W., Manocha, D.: Proxemic group behaviors using reciprocal multi-agent navigation. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 292–297 (2016)
Best, A., Narang, S., Manocha, D.: Real-time reciprocal collision avoidance with elliptical agents. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 298–305, IEEE (2016)
Hughes, R., Ondřej, J., Dingliana, J.: Holonomic collision avoidance for virtual crowds. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2014, Aire-la-Ville, Switzerland, Switzerland, pp. 103–111, Eurographics Association (2014)
Wang, L., Li, Z., Wen, C., He, R., Guo, F.: Reciprocal collision avoidance for nonholonomic mobile robots. In: 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 371–376. IEEE (2018)
Huang, X., Zhou, L., Guan, Z., Li, Z., Wen, C., He, R.: Generalized reciprocal collision avoidance for non-holonomic robots. In: 2019 14th IEEE conference on industrial electronics and applications (ICIEA), pp. 1623–1628. IEEE (2019)
Snape, J.: Optimal Reciprocal Collision Avoidance (C++), March 2019. github.com/snape/RVO2. Original-date: 2013–06-25T03:11:32Z
Douthwaite, J.A., Zhao, S., Mihaylova, L.S.: Velocity obstacle approaches for multi-agent collision avoidance. Unmanned Syst. 7(01), 55–64 (2019)
Seidel, R.: Small-dimensional linear programming and convex hulls made easy. Discrete Comput. Geomet. 6(3), 423–434 (1991). https://doi.org/10.1007/BF02574699
Gogoll, J., Müller, J.F.: Autonomous cars: in favor of a mandatory ethics setting. Sci. Eng. Ethics 23(3), 681–700 (2017)
Lin, P.: Why ethics matters for autonomous cars. In: Maurer, M., Gerdes, J., Lenz, B., Winner, H. (eds.) Autonomous Driving, pp. 69–85. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-45854-9_4
McBride, N.: The ethics of driverless cars. SIGCAS Comput. Soc. 45, 179–184 (2016)
Althoff, M., Mergel, A.: Comparison of Markov chain abstraction and Monte Carlo simulation for the safety assessment of autonomous cars. IEEE Trans. Intell. Transp. Syst. 12(4), 1237–1247 (2011)
Guo, J., Kurup, U., Shah, M.: Is it safe to drive? An overview of factors, metrics, and datasets for driveability assessment in autonomous driving. IEEE Trans. Intell. Transp. Syst. (2019)
Rasouli, A., Tsotsos, J.K.: Autonomous vehicles that interact with pedestrians: a survey of theory and practice. IEEE Trans. Intell. Transp. Syst. 21, 900–918 (2019)
Schwarting, W., Pierson, A., Alonso-Mora, J., Karaman, S., Rus, D.: Social behavior for autonomous vehicles. Proc. Natl. Acad. Sci. 116(50), 24972–24978 (2019)
Bonnefon, J.-F., Shariff, A., Rahwan, I.: The social dilemma of autonomous vehicles. Science 352(6293), 1573–1576 (2016)
Pettersson, I., Karlsson, I.C.M.: Setting the stage for autonomous cars: a pilot study of future autonomous driving experiences. IET Intell. Transp. Syst. 9, 694–701 (2015)
Boesch, P.M., Ciari, F.: Agent-based simulation of autonomous cars. In: 2015 American Control Conference (ACC), pp. 2588–2592. IEEE (2015)
Hörl, S.: Agent-based simulation of autonomous taxi services with dynamic demand responses. Proc. Comput. Sci. 109, 899–904 (2017)
Zhang, W., Guhathakurta, S., Fang, J., Zhang, G.: Exploring the impact of shared autonomous vehicles on urban parking demand: An agent-based simulation approach. Sustain. Cities Soc. 19, 34–45 (2015)
Berg, J.V.D., Snape, J., Guy, S.J., Manocha, D.: Reciprocal collision avoidance with acceleration-velocity obstacles. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3475–3482, May 2011
Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., Owens, J.D.: Gunrock: a high-performance graph processing library on the GPU. arXiv:1501.05387 [cs], pp. 1–12 (2016)
Catapult, T.S.: Driverless Pods
Nvidia: Tuning CUDA Applications for Maxwell (2018)
Alonso-Mora, J., Breitenmoser, A., Beardsley, P., Siegwart, R.: Reciprocal collision avoidance for multiple car-like robots. In: 2012 IEEE International Conference on Robotics and Automation, pp. 360–366, May 2012
Acknowledgements
This research was supported by EPSRC grant “Accelerating Scientific Discovery with Accelerated Computing” (grant number EP/N018869/1), and by the Transport Systems Catapult, and the National Council of Science and Technology in Mexico (Consejo Nacional de Ciencia y Tecnología, CONACYT).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer-Verlag GmbH Germany, part of Springer Nature
About this chapter
Cite this chapter
Charlton, J., Gonzalez, L.R.M., Maddock, S., Richmond, P. (2020). Simulating Crowds and Autonomous Vehicles. In: Gavrilova, M., Tan, C., Chang, J., Thalmann, N. (eds) Transactions on Computational Science XXXVII. Lecture Notes in Computer Science(), vol 12230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61983-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-662-61983-4_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-61982-7
Online ISBN: 978-3-662-61983-4
eBook Packages: Computer ScienceComputer Science (R0)