Abstract
Linked Data initiatives have encouraged the publication of a large number of RDF datasets created by different data providers independently. These datasets can be accessed using different Web interfaces, e.g., SPARQL endpoint; however, federated query engines are still required in order to provide an integrated view of these datasets. Given the large number of Web accessible RDF datasets, SPARQL federated query engines implement query processing techniques to effectively select the relevant datasets that provide the data required to answer a query. Existing federated query engines usually utilize coarse-grained description methods where datasets are characterized based on their vocabularies or schema, and details about data in the dataset are ignored, e.g., classes, properties, or relations. This lack of source description may lead to the erroneous selection of data sources for a query, and unnecessary retrieval of data and source communication, affecting thus the performance of query processing over the federation. We address the problem of federated SPARQL query processing and devise MULDER, a query engine for federations of RDF data sources. MULDER describes data sources in terms of an abstract description of entities belonging to the same RDF class, dubbed as an RDF molecule template, and utilizes them for source selection, and query decomposition and optimization. We empirically study the performance and continuous efficiency of MULDER on existing benchmarks, and compare with respect to existing federated SPARQL query engines. The experimental results suggest that RDF molecule templates empower MULDER, and allow for selection of RDF data sources that not only reduce execution time, but also increase answer completeness and continuous efficiency of MULDER.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
BSBM queries can be found in the Appendix A.
- 6.
The graph visualization was generated using the open source software platform cytoscape – http://www.cytoscape.org/.
- 7.
FedBench queries can be found in http://fedbench.fluidops.net/resource/Queries.
- 8.
A lower number of connected components indicates a stronger connectivity.
- 9.
LSLOD queries can be found in Appendix A.
References
Abdelaziz, I., Essam, M., Mourad, O., Ashraf, A., Kalnis, P.: Lusail: a system for querying linked data at scale. Proc. VLDB Endow. 10(9), 485–498 (2017)
Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_2
Acosta, M., Vidal, M.-E., Sure-Vetter, Y.: Diefficiency metrics: measuring the continuous efficiency of query processing approaches. In: d’Amato, C., et al. (eds.) ISWC 2017, Part II. LNCS, vol. 10588, pp. 3–19. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_1
Alexander, K., Hausenblas, M.: Describing linked datasets-on the design and usage of VoID, the ‘Vocabulary of Interlinked Datasets’. In: LDOW (2009)
Basca, C., Bernstein, A.: Querying a messy web of data with Avalanche. J. Web Semant. 26, 1–28 (2014)
Bizer, C., Schultz, A.: The berlin SPARQL benchmark. Int. J. Semant. Web Inf. Syst. (IJSWIS) 5(2), 1–24 (2009)
Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: SemaGrow: optimizing federated SPARQL queries. In: Proceedings of the 11th International Conference on Semantic Systems, pp. 121–128. ACM (2015)
Chen, C., Golshan, B., Halevy, A.Y., Tan, W., Doan, A.: BigGorilla: an open-source ecosystem for data preparation and integration. IEEE Data Eng. Bull. 41(2), 10–22 (2018)
Doan, A., Halevy, A.Y.: Semantic integration research in the database community: a brief survey. AI Mag. 26(1), 83–94 (2005)
Endris, K.M., Galkin, M., Lytra, I., Mami, M.N., Vidal, M.-E., Auer, S.: MULDER: querying the linked data web by bridging RDF molecule templates. In: Benslimane, D., Damiani, E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R. (eds.) DEXA 2017. LNCS, vol. 10438, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64468-4_1
Feigenbaum, L., Williams, G.T., Clark, K.G., Torres, E.: SPARQL 1.1 protocol. Recommendation, World Wide Web Consortium, March 2013. http://www.w3.org/TR/sparql11-protocol/
Fernández, J.D., Llaves, A., Corcho, O.: Efficient RDF interchange (ERI) format for RDF data streams. In: Mika, P., et al. (eds.) ISWC 2014, Part II. LNCS, vol. 8797, pp. 244–259. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11915-1_16
Fernández, J.D., Martínez-Prieto, M.A., de la Fuente Redondo, P., Gutiérrez, C.: Characterising RDF data sets. J. Inf. Sci. 44(2), 203–229 (2018)
Florescu, D., Levy, A.Y., Mendelzon, A.O.: Database techniques for the world-wide web: a survey. SIGMOD Rec. 27(3), 59–74 (1998)
Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VoID descriptions. In: COLD (2011)
Gubichev, A., Neumann, T.: Exploiting the query structure for efficient join ordering in SPARQL queries. In: EDBT, vol. 14, pp. 439–450 (2014)
Halevy, A.Y.: Answering queries using views: a survey. VLDB J. 10(4), 270–294 (2001)
Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Data integration: the teenage years. In: Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB), pp. 9–16 (2006)
Hasnain, A., et al.: BioFed: federated query processing over life sciences linked open data. J. Biomed. Semant. 8(1), 13 (2017)
Hayes, P., Patel-Schneider, P.: RDF 1.1 semantics, February 2014
Ives, Z.G., Florescu, D., Friedman, M., Levy, A.Y., Weld, D.S.: An adaptive query execution system for data integration. In: SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania, USA, 1–3 June 1999, pp. 299–310 (1999)
Ives, Z.G., Halevy, A.Y., Mork, P., Tatarinov, I.: Piazza: mediation and integration infrastructure for semantic web data. J. Web Sem. 1(2), 155–175 (2004)
Jha, A., et al.: Towards precision medicine: discovering novel gynecological cancer biomarkers and pathways using linked data. J. Biomed. Semant. 8(1), 40:1–40:16 (2017)
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)
Montoya, G., Skaf-Molli, H., Hose, K.: The Odyssey approach for optimizing federated SPARQL queries. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 471–489. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_28
Montoya, G., Skaf-Molli, H., Molli, P., Vidal, M.-E.: Federated SPARQL queries processing with replicated fragments. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 36–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_3
Montoya, G., Skaf-Molli, H., Molli, P., Vidal, M.: Decomposing federated queries in presence of replicated fragments. J. Web Semant. 42, 1–18 (2017)
Montoya, G., Vidal, M.-E., Acosta, M.: A heuristic-based approach for planning federated SPARQL queries. In: Proceedings of the Third International Conference on Consuming Linked Data, vol. 905, pp. 63–74. CEUR-WS. org (2012)
Neumann, T., Moerkotte, G.: Characteristic sets: accurate cardinality estimation for RDF queries with multiple joins. In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), pp. 984–994. IEEE (2011)
Palma, G., Vidal, M.-E., Raschid, L.: Drug-target interaction prediction using semantic similarity and edge partitioning. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 131–146. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_9
Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. (TODS) 34(3), 16 (2009)
Saleem, M., Khan, Y., Hasnain, A., Ermilov, I., Ngomo, A.N.: A fine-grained evaluation of SPARQL endpoint federation systems. Semant. Web 7(5), 493–518 (2015)
Saleem, M., Ngonga Ngomo, A.-C., Xavier Parreira, J., Deus, H.F., Hauswirth, M.: DAW: Duplicate-AWare federated query processing over the web of data. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 574–590. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_36
Saleem, M., Ngonga Ngomo, A.-C.: HiBISCuS: hypergraph-based source selection for SPARQL endpoint federation. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 176–191. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07443-6_13
Scheufele, W., Moerkotte, G.: On the complexity of generating optimal plans with cross products. In: 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 238–248 (1997)
Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench: a benchmark suite for federated semantic data query processing. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 585–600. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_37
Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench: a benchmark suite for federated semantic data query processing. In: Aroyo, L., et al. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 585–600. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_37
Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: Sp\(\wedge \)2bench: a SPARQL performance benchmark. In: IEEE 25th International Conference on Data Engineering, ICDE 2009, pp. 222–233. IEEE (2009)
Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization. In: Proceedings of the 13th International Conference on Database Theory, pp. 4–33. ACM (2010)
Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_38
Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface for the web. J. Web Semant. 37, 184–206 (2016)
Vidal, M., Castillo, S., Acosta, M., Montoya, G., Palma, G.: On the selection of SPARQL endpoints to efficiently execute federated SPARQL queries. Trans. Large-Scale Data- Knowl.-Centered Syst. 25, 109–149 (2016)
Wylot, M., Cudré-Mauroux, P.: DiploCloud: efficient and scalable management of RDF data in the cloud. IEEE Trans. Knowl. Data Eng. 28(3), 659–674 (2016)
Zadorozhny, V., Raschid, L., Vidal, M.-E., Urhan, T., Bright, L.: Efficient evaluation of queries in a mediator for WebSources. In: Proceedings of the SIGMOD Conference, pp. 85–96 (2002)
Acknowledgements
This work has been partially funded by the EU Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 642795 (WDAqua), the EU H2020 programme for the projects BigDataEurope (GA 644564), and iASiS (GA 727658). Mikhail Galkin is supported by a scholarship of German Academic Exchange Service (DAAD).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
Appendices
A BSBM Queries













B LSLOD Queries











Rights and permissions
Copyright information
© 2018 Springer-Verlag GmbH Germany, part of Springer Nature
About this chapter
Cite this chapter
Endris, K.M., Galkin, M., Lytra, I., Mami, M.N., Vidal, ME., Auer, S. (2018). Querying Interlinked Data by Bridging RDF Molecule Templates. In: Hameurlain, A., Wagner, R., Benslimane, D., Damiani, E., Grosky, W. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXIX. Lecture Notes in Computer Science(), vol 11310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58415-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-662-58415-6_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-58414-9
Online ISBN: 978-3-662-58415-6
eBook Packages: Computer ScienceComputer Science (R0)