Abstract
Switch and medial are two inference rules that play a central role in many deep inference proof systems. In specific proof systems, the mix rule may also be present. In this paper we show that the maximal length of a derivation using only the inference rules for switch, medial, and mix, modulo associativity and commutativity of the two binary connectives involved, is quadratic in the size of the formula at the conclusion of the derivation. This shows, at the same time, the termination of the rewrite system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The relation web of a formula provides a graph-based representation of a formula in deep inference contextual rewriting, as in [12]. An equivalent definition of the relweb-or-number is the number of edges in the cograph for .
References
Bechet, D., Groote, P., Retoré, C.: A complete axiomatisation for the inclusion of series-parallel partial orders. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 230–240. Springer, Heidelberg (1997). doi:10.1007/3-540-62950-5_74
Blute, R., Cockett, R., Seely, R., Trimble, T.: Natural deduction and coherence for weakly distributive categories. J. Pure Appl. Algebra 113, 229–296 (1996)
Brünnler, K., Tiu, A.F.: A local system for classical logic. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 347–361. Springer, Heidelberg (2001). doi:10.1007/3-540-45653-8_24
Bruscoli, P.: A purely logical account of sequentiality in proof search. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 302–316. Springer, Heidelberg (2002). doi:10.1007/3-540-45619-8_21
Bruscoli, P., Guglielmi, A.: On the proof complexity of deep inference. ACM Trans. Comput. Logic 10(2), 1–34 (2009). Article 14
Bruscoli, P., Guglielmi, A., Gundersen, T., Parigot, M.: A quasipolynomial cut-elimination procedure in deep inference via atomic flows and threshold formulae. In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 136–153. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4_9
Bruscoli, P., Guglielmi, A., Gundersen, T., Parigot, M.: A quasipolynomial normalisation in deep inference via atomic flows and threshold formulae. Log. Methods Comput. Sci. 12(1:5), 1–30 (2016)
Das, A.: Complexity of deep inference via atomic flows. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 139–150. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30870-3_15
Das, A.: Rewriting with linear inferences in propositional logic. In: van Raamsdonk, F. (ed) 24th International Conference on Rewriting Techniques and Applications (RTA). Leibniz International Proceedings in Informatics (LIPIcs), vol. 21, pp. 158–173. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2013)
Das, A., Straßburger, L.: No complete linear term rewriting system for propositional logic. In: Fernandez, M. (ed) 26th International Conference on Rewriting Techniques and Applications, RTA 2015. LIPIcs, Warsaw, Poland, 29 June to 1 July 2015, vol. 36, pp. 127–142 (2015)
Das, A., Straßburger, L.: On linear rewriting systems for boolean logic and some applications to proof theory. Log. Methods Comput. Sci. 12(4) (2016)
Guglielmi, A.: A system of interaction and structure. ACM Trans. Comput. Logic 8(1), 1–64 (2007)
Guglielmi, A., Gundersen, T.: Normalisation control in deep inference via atomic flows. Log. Methods Comput. Sci. 4(1:9), 1–36 (2008)
Guglielmi, A., Gundersen, T., Straßburger, L.: Breaking paths in atomic flows for classical logic. In: LICS 2010 (2010)
Guglielmi, A., Straßburger, L.: Non-commutativity and MELL in the calculus of structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 54–68. Springer, Heidelberg (2001). doi:10.1007/3-540-44802-0_5
Gundersen, T., Heijltjes, W., Parigot, M.: Atomic lambda calculus: a typed lambda-calculus with explicit sharing. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, 25–28 June 2013, pp. 311–320. IEEE Computer Society (2013)
Kahramanogullari, O.: Interaction and depth against nondeterminism in proof search. Log. Methods Comput. Sci. 10(2) (2014)
Lamarche, F.: Exploring the gap between linear and classical logic. Theory Appl. Categ. 18(18), 473–535 (2007)
Straßburger, L.: A local system for linear logic. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 388–402. Springer, Heidelberg (2002). doi:10.1007/3-540-36078-6_26
Straßburger, L.: A characterization of medial as rewriting rule. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 344–358. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73449-9_26
Straßburger, L.: On the axiomatisation of Boolean categories with and without medial. Theory Appl. Categ. 18(18), 536–601 (2007)
Aler Tubella, A.: A study of normalisation through subatomic logic. PhD thesis, University of Bath (2016)
Acknowledgements
We are grateful to Alessio Guglielmi and Tom Gundersen, for their encouragements and checks, and to the anonymous referees. Paola Bruscoli was funded by EPSRC Project EP/K018868/1 “Efficient and Natural Proof Systems”. This research is also supported by ANR Project FISP – “The Fine Structure of Formal Proof Systems and their Computational Interpretations.”
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer-Verlag GmbH Germany
About this paper
Cite this paper
Bruscoli, P., Straßburger, L. (2017). On the Length of Medial-Switch-Mix Derivations. In: Kennedy, J., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2017. Lecture Notes in Computer Science(), vol 10388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55386-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-662-55386-2_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-55385-5
Online ISBN: 978-3-662-55386-2
eBook Packages: Computer ScienceComputer Science (R0)