Total Search Problems in Bounded Arithmetic and Improved Witnessing | SpringerLink
Skip to main content

Total Search Problems in Bounded Arithmetic and Improved Witnessing

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10388))

  • 518 Accesses

Abstract

We define a new class of total search problems as a subclass of Megiddo and Papadimitriou’s class of total \({\mathsf {NP}}\) search problems, in which solutions are verifiable in \({\mathsf {AC}}^0\). We denote this class \(\forall \exists {\mathsf {AC}}^0\). We show that all total \({\mathsf {NP}}\) search problems are equivalent, w.r.t. \({\mathsf {AC}}^0\)-many-one reductions, to search problems in \(\forall \exists {\mathsf {AC}}^0\). Furthermore, we show that \(\forall \exists {\mathsf {AC}}^0\) contains well-known problems such as the Stable Marriage and the Maximal Independent Set problems. We introduce the class of Inflationary Iteration problems in \(\forall \exists {\mathsf {AC}}^0\), and show that it characterizes the provably total \({\mathsf {NP}}\) search problems of the bounded arithmetic theory corresponding to polynomial-time. Cook and Nguyen introduced a generic way of defining a bounded arithmetic theory \({\mathsf {VC}}\) for complexity classes \({\mathsf {C}}\) which can be obtained using a complete problem. For such C we will define a new class \({\mathsf {KPT[C]}}\) of \(\forall \exists {\mathsf {AC}}^0\) search problems based on Student-Teacher games in which the student has computing power limited to \({\mathsf {AC}}^0\). We prove that \({\mathsf {KPT[C]}}\) characterizes the provably total \({\mathsf {NP}}\) search problems of the bounded arithmetic theory corresponding to \({\mathsf {C}}\). All our characterizations are obtained via “new-style” witnessing theorems, where reductions are provable in a theory corresponding to AC \(^0\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beckmann, A., Buss, S.R.: Polynomial local search in the polynomial hierarchy and witnessing in fragments of bounded arithmetic. J. Math. Log. 9(1), 103–138 (2009). doi:10.1142/S0219061309000847

    Article  MathSciNet  MATH  Google Scholar 

  3. Beckmann, A., Buss, S.R.: Characterising definable search problems in bounded arithmetic via proof notations. In: Ways of Proof Theory. Ontos Series on Mathematical Logic, vol. 2, pp. 65–133. Ontos Verlag, Heusenstamm (2010)

    Google Scholar 

  4. Beckmann, A., Buss, S.R.: Improved witnessing and local improvement principles for second-order bounded arithmetic. ACM Trans. Comput. Log. 15(1), 35 (2014). doi:10.1145/2559950. (Art. 2)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buss, S.R.: Bounded Arithmetic. Studies in Proof Theory. Lecture Notes, vol. 3. Bibliopolis, Naples (1986)

    MATH  Google Scholar 

  6. Buss, S.R., Krajíček, J.: An application of Boolean complexity to separation problems in bounded arithmetic. Proc. Lond. Math. Soc. (3) 69(1), 1–21 (1994). doi:10.1112/plms/s3-69.1.1

    Article  MathSciNet  MATH  Google Scholar 

  7. Chiari, M., Krajíček, J.: Witnessing functions in bounded arithmetic and search problems. J. Symb. Log. 63(3), 1095–1115 (1998). doi:10.2307/2586729

    Article  MathSciNet  MATH  Google Scholar 

  8. Cook, S., Nguyen, P.: Logical Foundations of Proof Complexity, 1st edn. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  9. Cook, S.A., Filmus, Y., Lê, D.T.M.: The complexity of the comparator circuit value problem. ACM Trans. Comput. Theory 6(4), 44 (2014). doi:10.1145/2635822

    Article  MathSciNet  MATH  Google Scholar 

  10. Eguchi, N.: Characterising complexity classes by inductive definitions in bounded arithmetic, June 2013. ArXiv e-prints

    Google Scholar 

  11. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 120(5), 386–391 (2013). doi:10.4169/amer.math.monthly.120.05.386. (Reprint of MR1531503)

    Article  MathSciNet  MATH  Google Scholar 

  12. Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science. Springer, New York (1999). doi:10.1007/978-1-4612-0539-5

    Book  MATH  Google Scholar 

  13. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37(1), 79–100 (1988). doi:10.1016/0022-0000(88)90046-3. (In: 26th IEEE Conference on Foundations of Computer Science, Portland, OR (1985))

    Article  MathSciNet  MATH  Google Scholar 

  14. Karp, R.M., Wigderson, A.: A fast parallel algorithm for the maximal independent set problem. J. Assoc. Comput. Mach. 32(4), 762–773 (1985). doi:10.1145/4221.4226

    Article  MathSciNet  MATH  Google Scholar 

  15. Kołodziejczyk, L.A., Nguyen, P., Thapen, N.: The provably total NP search problems of weak second order bounded arithmetic. Ann. Pure Appl. Log. 162(6), 419–446 (2011). doi:10.1016/j.apal.2010.12.002

    Article  MathSciNet  MATH  Google Scholar 

  16. Krajíček, J., Pudlák, P., Takeuti, G.: Bounded arithmetic and the polynomial hierarchy. Ann. Pure Appl. Logic 52(1–2), 143–153 (1991). doi:10.1016/0168-0072(91)90043-L. (In: International Symposium on Mathematical Logic and Its Applications, Nagoya (1988))

    Article  MathSciNet  MATH  Google Scholar 

  17. Krajíček, J., Skelley, A., Thapen, N.: NP search problems in low fragments of bounded arithmetic. J. Symb. Log. 72(2), 649–672 (2007). doi:10.2178/jsl/1185803628

    Article  MathSciNet  MATH  Google Scholar 

  18. Luby, M.: A simple parallel algorithm for the maximal independent set problem. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC 1985, pp. 1–10. ACM, New York (1985). doi:10.1145/22145.22146

  19. Mayr, E.W., Subramanian, A.: The complexity of circuit value and network stability. J. Comput. Syst. Sci. 44(2), 302–323 (1992). doi:10.1016/0022-0000(92)90024-D

    Article  MathSciNet  MATH  Google Scholar 

  20. Megiddo, N., Papadimitriou, C.H.: On total functions, existence theorems and computational complexity. Theoret. Comput. Sci. 81(2), 317–324 (1991). doi:10.1016/0304-3975(91)90200-L. (Algorithms, Automata, Complexity and Games)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mix-Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within NC1. J. Comput. Syst. Sci. 41(3), 274–306 (1990). doi:10.1016/0022-0000(90)90022-D

    Article  MATH  Google Scholar 

  22. Morioka, T.: Classification of search problems and their definability in bounded arithmetic (2001)

    Google Scholar 

  23. Razafindrakoto, J.J.: Witnessing theorems in bounded arithmetic and applications. Ph.D. thesis, Swansea University (2016). http://cs.swan.ac.uk/~csjjr/Papers/thesis.pdf

  24. Thapen, N.: Higher complexity search problems for bounded arithmetic and a formalized no-gap theorem. Arch. Math. Log. 50(7–8), 665–680 (2011). doi:10.1007/s00153-011-0240-0

    Article  MathSciNet  MATH  Google Scholar 

  25. Zambella, D.: Notes on polynomially bounded arithmetic. J. Symb. Log. 61(3), 942–966 (1996). doi:10.2307/2275794

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We would like to thank Noahi Eguchi. Our characterisation of \(\forall \varSigma ^B_1({\mathsf {V}}^1)\) using inflationary iteration grew out of discussions with him on his attempt to capture P via a two-sorted theory using axioms on inductive definitions [10].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-José Razafindrakoto .

Editor information

Editors and Affiliations

Appendix A: Proof of Theorem 15

Appendix A: Proof of Theorem 15

In what follows, when we say that a theory \(\mathcal {T}\) proves a sequent

$$\begin{aligned} \varphi _1, \ldots , \varphi _k\longrightarrow \psi _1, \ldots \psi _l, \end{aligned}$$

we mean that \(\mathcal {T}\) proves

$$\begin{aligned} \bigwedge _{i = 1}^{k} \varphi _i \supset \bigvee _{j = 1}^l \psi _j. \end{aligned}$$

Buss [5] originally proved his witnessing theorem for \({\mathsf {V}}^1\) via a witnessing lemma. Here, we do the same; that is to say, we use a new-style witnessing lemma in order to prove Theorem 15.

Lemma 17

(New-style Witnessing Lemma for \({\mathsf {V}}^1\) ). Suppose that the theory \({\mathsf {V}}^1\) proves a sequent \(\varGamma (A)\longrightarrow \varDelta (A)\) of the form

$$\begin{aligned} \ldots , \exists X_i \phi '_i(X_i), \ldots , \varLambda \longrightarrow \varPi , \ldots , \exists Y_j \psi '_j(Y_j), \ldots \end{aligned}$$
(10)

where \(\phi '_i, \psi '_j, \varLambda \) and \(\varPi \) are \(\varSigma ^B_0\)-formulae. Then there is an \({\mathsf {IITER}}\) problem \(Q_F\) with graph \(\psi _F\) and \({\mathsf {F}}{\mathsf {AC}}^0\)-functions \(\varvec{G}\) such that \(\overline{{\mathsf {V}}}^0\) proves the sequent \(\varGamma '\longrightarrow \varDelta '\), which is

$$\begin{aligned} \ldots , \phi '_i(\beta _i), \ldots , \varLambda , \psi _F(A, \varvec{\beta }, \gamma ) \longrightarrow \varPi , \ldots , \psi '_j(G_j(A, \varvec{\beta }, \gamma )), \ldots \end{aligned}$$
(11)

We will use a version of the sequent calculus to prove this lemma. Given a sequent calculus proof \(\pi \) of (10) we try to show the conclusion of Lemma 17 by structural induction on the depth of a sequent S in \(\pi \). If we use directly a sequent calculus for \({\mathsf {V}}^1\), we have the issue that the \(\varSigma ^B_1\)-\({\mathsf {COMP}}\) axiom is in general not equivalent to a \(\varSigma ^B_1\)-formula. As a result, the proof \(\pi \) may contain formulae that are not \(\varSigma ^1_1\). To circumvent this obstacle, we need to work with a slightly different theory \(\widetilde{{\mathsf {{V}}}}^1\) equivalent to \({\mathsf {V}}^1\). For that, first consider the following definition:

Definition 18

(Cook and Nguyen [8]). Let \(\psi (X)\) be an \(\mathcal {L}^2_A\)-formula. Then \(\psi \) is a single- \(\varSigma ^1_1\) -formula if \(\psi \) is of the form \(\exists Y \varphi (X, Y)\), where \(\varphi \) is a \(\varSigma ^B_0\)-formula. If \(\psi \) is of the form \((\exists Y \le t) \varphi (X, Y)\), where \(\varphi \) is a \(\varSigma ^B_0\)-formula and t is an \(\mathcal {L}^2_A\)-term not involving Y, then \(\psi \) is a single- \(\varSigma ^B_1\) -formula.

Definition 19

(Cook and Nguyen [8]). The theory \({\tilde{V}}^1\) is axiomatized by the axioms of \({\mathsf {V}}^0\) plus the single-\(\varSigma ^B_1\)-\({\mathsf {IND}}\) axiom scheme.

Below, we merely state that \(\widetilde{{\mathsf {{V}}}}^1 = {\mathsf {V}}^1\) without proof. A full proof of it can be found in [8, Theorem VI.4.8].

Theorem 20

(Cook and Nguyen [8]). The theories \({\tilde{V}}^1\) and \({\mathsf {V}}^1\) are the same.

The sequent calculus \({\mathsf {LK}}\)-\({\tilde{V}}^1\) for \({\tilde{V}}^1\) is essentially the sequent calculus \({\mathsf {LK}}\)-\({\mathsf {V}}^0\) for \({\mathsf {V}}^0\) (c.f. [8]) augmented with the single- \(\varSigma ^B_1\)-\({\mathsf {IND}}\) rule, which is

where \(\chi \in \varSigma ^{\mathrm {B}}_1 \), and b is an eigenvariable and cannot appear in the lower sequent.

The sequent calculus \({\mathsf {LK}}\)-\({\tilde{V}}^1\) satisfies the following property, whose proof can be found in [8]:

Theorem 21

(Cook and Nguyen [8]). Suppose that \(\widetilde{{\mathsf {{V}}}}^1\) proves a sequent \(\varGamma \longrightarrow \varDelta \) consisting only of single-\(\varSigma ^1_1\)-formulae. Then there is an \({\mathsf {LK}}\)-\(\widetilde{{\mathsf {{V}}}}^1\) proof \(\pi \) of \(\varGamma \longrightarrow \varDelta \) such that every formula in \(\pi \) is a single-\(\varSigma ^1_1\)-formula.

We are now ready to prove Lemma 17. The proof technique we use to prove Lemma 17 is similar to the one used for Theorem VI.4.1 in [8, p. 154] (which is a witnessing theorem for \({\mathsf {V}}^1\)), which adopts the same proof technique as Buss (cf. [5, Theorem 5]).

Proof

(of the New-style Witnessing Lemma for \({\mathsf {V}}^1\) , Lemma 17 ). Since \(\widetilde{{\mathsf {{V}}}}^1\) and \({\mathsf {V}}^1\) are the same, it follows that \(\widetilde{{\mathsf {{V}}}}^1\) proves (10). By Theorem 21, let \(\pi \) be an \({\mathsf {LK}}\)-\(\widetilde{{\mathsf {{V}}}}^1\) proof of (10) such that every formula in \(\pi \) is a single-\(\varSigma ^1_1\)-formula. We show that \(\overline{{\mathsf {V}}}^0\) proves the conclusion of Lemma 17 by induction on the depth of a sequent S in \(\pi \). The inductive proof splits into cases, depending on whether S is an initial sequent or generated by the use of an inference rule. The most crucial case is the case of the single-\(\varSigma ^B_1\)-\({\mathsf {IND}}\) rule.

Suppose that S is obtained by the application of the single-\(\varSigma ^B_1\)-\({\mathsf {IND}}\) rule. Then S is the bottom sequent of

figure b

where (omitting the parameters \(A\)) \(\psi (b)\) is of the form \((\exists X \le r(b)) \psi _0(b, X)\) and

$$\begin{aligned} \varPi = \varPi ', \exists Y_1 \psi '_1(Y_1),\ldots , \exists Y_l \psi '_l(Y_l). \end{aligned}$$

Here \(\varPi ', \psi '_1, \ldots , \psi '_l\) is a sequence of \(\varSigma ^B_0\)-formulae. Let \(\eta (b, \beta )\) denote the formula \(|\beta | \le r(b) \wedge \psi _0(b, \beta )\). By the induction hypothesis, let \(Q_{F_1}\) be an \({\mathsf {IITER}}\) problem specified by \(F_1\) and \(t_1\), with graph \(\psi _{F_1}\), and \(G^1_1, \ldots , G^1_l\) and \(G^1_{l + 1}\) be the witnessing functions for the formulae in \(\varPi , \psi (b + 1)\) such that \(\overline{{\mathsf {V}}}^0\) proves the following (omitting the parameters \(A\), \(\varvec{\lambda }\), where \(\varvec{\lambda }\) are witnesses for the formulae in \(\varLambda \)):

$$\begin{aligned} \eta (b,\beta ), \varLambda ', \psi _{F_1}(b,\beta , \gamma ) \longrightarrow \varPi ''(G^1_j(b, \beta , \gamma )), \eta (b + 1,G^1_{l + 1}(b, \beta , \gamma )) \end{aligned}$$
(12)

where \(\varLambda '\) is the result of witnessing \(\varSigma ^1_1\)-formulae in \(\varLambda \) and leaving the rest unchanged and \(\varPi ''(G^1_j(b,\beta , \gamma )) = \varPi ', \psi '_1(G^1_1(b,\beta ,\gamma )), \ldots , \psi '_l(G^1_l(b,\beta ,\gamma ))\). Our goal is to construct an \({\mathsf {IITER}}\) problem \(Q_F\) (with graph \(\psi _F\)) and \({\mathsf {F}}{\mathsf {AC}}^0\)-functions \(G_1, \ldots , G_l\) and \(G_{l + 1}\) such that \(\overline{{\mathsf {V}}}^0\) proves the following:

$$\begin{aligned} \eta (0, \beta _0), \varLambda ', \psi _F(\beta _0, \gamma ) \longrightarrow \varPi ''(G_j(\beta _0, \gamma )), \eta (t, G_{l +1}(\beta _0, \gamma )). \end{aligned}$$
(13)

The intuitive idea behind the definition of \(Q_F\) is that, assuming that \(\eta (0,\beta _0)\) is true, we will repeatedly use \(Q_{F_1}\) and \(G^1_{l + 1}\) in order to generate witnesses \(\beta _1, \ldots , \beta _n\) for \(\psi (1), \ldots , \psi (n)\), respectively, for \(n \le t\). If \(n < t\), then \(Q_{F_1}\) failed to generate a witness to \(\psi (n + 1)\). Therefore, assuming that the hypothesis for (13) is true and using (12), we obtain our desired goal.

In what follows, the string concatenation function \(X *_z Y\) is an \({\mathsf {F}}{\mathsf {AC}}^0\) string function that concatenates the first z bits of X with Y and can be recursively extended in the natural way. Omitting the subscripts to \(*\), we write \(Y_0 *\ldots *y *\ldots *Y_k\) for \(Y_0 *\ldots *Y *\ldots *Y_k\), where Y is the string representing the unary notation of the number value y.

We assume that the search variable for \(Q_F\) is of the form

$$\begin{aligned} \gamma = \langle A, \beta _0, \varvec{\lambda }\rangle *_s S_0 *_{2s} S_1 *_{3s} \ldots *_{(m + 1)s} S_m, \end{aligned}$$

where s (s is obtained from t and the bounding term r, in the induction-formula \(\psi \), and the bounding term \(t_1\) for \(Q_{F_1}\)) is a suitable \(\mathcal {L}^2_A\)-term that bounds \(|\langle A, \beta _0, \varvec{\lambda }\rangle |, |S_0|, \ldots , |S_m|\); the symbol \(S_i\) denotes \(i *\beta _i *\gamma _i *1\) and \(m \le t\). Note here that, even though we omitted the subscripts to \(*\) in \(S_i\), they are somehow implicit. Let us now define the transition function F for \(Q_F\). In the following, we again omit the parameters \(A, \varvec{\lambda }\) for F. As usual, we will drop the subscripts to \(*\) in \(F(\beta _0,\gamma )\). If \(\gamma =\emptyset \), then

$$\begin{aligned} F(\beta _0, \gamma ) = \langle A, \beta _0, \varvec{\lambda }\rangle *0 *\beta _0 *\emptyset *1. \end{aligned}$$
(14)

Assume now that \(\gamma \not = \emptyset \) and suppose that \(m < t\) and \(\eta (m, \beta _m)\) is true. Then there are two cases to consider. First, if \(|\gamma _m| \le t_1 \wedge \gamma _m < F_1(m, \beta _m, \gamma _m) \wedge \lnot \psi _{F_1}(m, \beta _m, \gamma _m)\) is true, then

$$\begin{aligned} F(\beta _0, \gamma ) = \langle A, \beta _0, \varvec{\lambda }\rangle *S_0 *\ldots *S_{m - 1} *m *\beta _m *F_1(m, \beta _m, \gamma _m) *1. \end{aligned}$$
(15)

Second, if \(|\gamma _m| \le t_1 \wedge \gamma _m < F_1(m, \beta _m, \gamma _m) \wedge \psi _{F_1}(m, \beta _m, \gamma _m)\), then

$$\begin{aligned} F(\beta _0,\gamma ) = \langle A, \beta _0, \varvec{\lambda }\rangle *S_0 *\ldots *S_m *(m + 1) *G^1_{l + 1}(m, \beta _m, \gamma _m) *\emptyset *1. \end{aligned}$$
(16)

In all other cases, \(F(\beta _0, \gamma ) = \gamma \). Let \(t_{Q_F}\) be \( (t + 2)\cdot s\) and \(Q_F\) be specified by F and \(t_{Q_F}\). Finally, we define the \({\mathsf {F}}{\mathsf {AC}}^0\)-functions \(G_i\), for \(i = 1,\ldots , l + 1\), as follows:

$$\begin{aligned} G_j(\beta _0, \gamma ) = {\left\{ \begin{array}{ll} \beta _0 &{} \quad \text {if } t = 0 \\ G^1_j(m, \beta _m, \gamma _m) &{} \quad \text {otherwise,} \end{array}\right. } \end{aligned}$$

The fact that \(\overline{{\mathsf {V}}}^0\) proves (13) follows from (13)’s assumptions, from the following claim, the induction hypothesis and the definition of \(G_j\) above. As a side remark, note that if \(t = 0\), then \(\overline{{\mathsf {V}}}^0\) proves (13) trivially.

Claim

We reason in \(\overline{{\mathsf {V}}}^0\). Suppose that \(t \not = 0\), \(\eta (0, \beta _0)\) is true and \(\gamma = \langle A, \beta _0, \varvec{\lambda }\rangle *S_0 *\ldots *S_m\) is a solution to \(Q_F(\beta _0)\), where \(S_i\) is again of the form \(i *\beta _i *\gamma _i *1\). Then \(\eta (m, \beta _m)\) is true; \(\gamma _m\) is a solution to \(Q_{F_1}(m,\beta _m)\); and either \(\lnot \eta (m + 1, G^1_{l + 1}(m, \beta _m, \gamma _m))\) or \(\eta (t, G_{l + 1}(\beta _0, \gamma ))\) is true.

Proof of Claim. Since \(\gamma \) is a solution to \(Q_F(\beta _0)\), then we have two possibilities: either \(\gamma = \emptyset \) and \(F(\beta _0, \gamma ) = \gamma \), or

$$\begin{aligned} |\gamma | \le t_{Q_F} \wedge \gamma < F(\beta _0, \gamma ) \wedge [|F(\beta _0, \gamma )| > t_{Q_F} \vee F(\beta _0, F(\beta _0, \gamma )) = F(\beta _0, \gamma )]. \end{aligned}$$

Note that, by the definition of F, \(\emptyset \) cannot be a solution to \(Q_F(\beta _0)\) and \(|F(\beta _0,\gamma )| \le t_{Q_F}\). Therefore, we have that

$$\begin{aligned} \gamma \not = \emptyset \wedge \gamma < F(\beta _0, \gamma ) = F(\beta _0, F(\beta _0, \gamma )). \end{aligned}$$
(17)

The only way for (17) to hold is if (16) is true. This implies that \(\eta (m, \beta _m)\) holds and \(\psi _{F_1}(m, \beta _m, \gamma _m)\) is true; that is to say, \(\gamma _m\) is a solution \(Q_{F_1}(m, \beta _m)\). Hence, we are left with proving the following:

$$\begin{aligned} \lnot \eta (m + 1, G^1_{l + 1}(m, \beta _m, \gamma _m)) \vee \eta (t, G_{l + 1}(\beta _0,\gamma )). \end{aligned}$$

If \(m + 1 = t\), then we are done. So, assume that \(m + 1 < t\). For the sake of contradiction, assume that \(\eta (m + 1, G^1_{l + 1}(m, \beta _m, \gamma _m))\) holds. This means that \(F(\beta _0,\gamma ) < F(\beta _0, F(\beta _0,\gamma ))\), which is a contradiction. Thus, we are done with the proof of the claim.    \(\square \)

This finishes the proof of Lemma 17.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Beckmann, A., Razafindrakoto, JJ. (2017). Total Search Problems in Bounded Arithmetic and Improved Witnessing. In: Kennedy, J., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2017. Lecture Notes in Computer Science(), vol 10388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55386-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55386-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55385-5

  • Online ISBN: 978-3-662-55386-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics