Independence-Friendly Logic Without Henkin Quantification | SpringerLink
Skip to main content

Independence-Friendly Logic Without Henkin Quantification

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10388))

Abstract

We analyze from a global point of view the expressive resources of \(\mathrm {IF}\) logic that do not stem from Henkin (partially-ordered) quantification. When one restricts attention to regular \(\mathrm {IF}\) sentences, this amounts to the study of the fragment of \(\mathrm {IF}\) logic which is individuated by the game-theoretical property of Action Recall. We prove that the fragment of Action Recall can express all existential second-order (\(\mathrm {ESO}\)) properties. This can be accomplished already by the prenex fragment of Action Recall, whose only second-order source of expressiveness are the so-called signalling patterns. The proof shows that a complete set of Henkin prefixes is explicitly definable in the fragment of Action Recall. In the more general case, in which also irregular IF sentences are allowed, we show that full \(\mathrm {ESO}\) expressive power can be achieved using neither Henkin nor signalling patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The notion of regularity will be defined in Sect. 2.

  2. 2.

    It can be done, at the cost of defining a notion of satisfaction by sets of assignment, instead of the usual single assignments. See e.g. [5, 11, 12, 15, 18].

  3. 3.

    This point is exemplified by the \(\mathrm {IF}\) rendition of the \(\mathrm {H}_2^1\) prefix, shown above: its “slash set” \(\{x^1_1, y_1\}\) contains an existentially quantified variable, \(y_1\).

References

  1. Barbero, F.: On existential declarations of independence in IF logic. Rev. Symb. Log. 6, 254–280 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbero, F.: Complexity of syntactical tree fragments of Independence-Friendly logic. pre-print arXiv:1610.03406

  3. Caicedo, X., Dechesne, F., Janssen, T.M.V.: Equivalence and quantifier rules for logic with imperfect information. Log. J. IGPL 17, 91–129 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caicedo, X., Krynicki, M.: Quantifiers for reasoning with imperfect information and \(\Sigma _1^1\)-logic. In: Carnielli, W.A., D’Ottaviano, I.M.L. (eds.) Contemporary Mathematics, vol. 235, pp. 17–31. American Mathematical Society (1999)

    Google Scholar 

  5. Cameron, P., Hodges, W.: Some combinatorics of imperfect information. J. Symb. Log. 66, 673–684 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dahlhaus, E.: Reduction to NP-complete problems by interpretations. In: Proceedings of the Symposium “Rekursive Kombinatorik” on Logic and Machines: Decision Problems and Complexity, pp. 357–365 (1983)

    Google Scholar 

  7. Enderton, H.B.: Finite partially ordered quantifiers. Math. Log. Q. 16(8), 393–397 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grandjean, E.: First-order spectra with one variable. J. Comput. Syst. Sci. 40, 136–153 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Henkin, L.: Some remarks on infinitely long formulas. In: Infinitistic Methods. Pergamon Press, Oxford, New York (1961)

    Google Scholar 

  10. Hintikka, J., Sandu, G.: Informational independence as a semantical phenomenon. In: Fenstad, J.E., et al. (eds.) Logic, Methodology and Philosophy of Science VIII, pp. 571–589. Elsevier Science Publishers B.V, Amsterdam (1989)

    Google Scholar 

  11. Hodges, W.: Compositional semantics for a language of imperfect information. Log. J. IGPL 5, 539–563 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hodges, W.: Some strange quantifiers. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science. LNCS, vol. 1261, pp. 51–65. Springer, Heidelberg (1997). doi:10.1007/3-540-63246-8_4

    Chapter  Google Scholar 

  13. Hyttinen, T., Tulenheimo, T.: Decidability of IF modal logic of perfect recall. In: Advances in Modal Logic, vol. 5 (2005)

    Google Scholar 

  14. Krynicki, M.: Hierarchies of partially ordered connectives and quantifiers. Math. Log. Q. 39, 287–294 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mann, A.L., Sandu, G., Sevenster, M.: Independence-Friendly Logic - a Game-Theoretic Approach. London Mathematical Society Lecture Note Series, vol. 386. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  16. Sevenster, M.: Branches of imperfect information: logic, games, and computation. Ph.D. thesis, ILLC, Universiteit van Amsterdam (2006)

    Google Scholar 

  17. Sevenster, M.: Dichotomy result for independence-friendly prefixes of generalized quantifiers. J. Symbol. Log. 79(04), 1224–1246 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Väänänen, J., Logic, D.: A New Approach to Independence Friendly Logic. London Mathematical Society Student Texts, vol. 70. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  19. Virtema, J.: Approaches to finite variable dependence. Ph.D. thesis, University of Tampere (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Barbero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Barbero, F., Hella, L., Rönnholm, R. (2017). Independence-Friendly Logic Without Henkin Quantification. In: Kennedy, J., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2017. Lecture Notes in Computer Science(), vol 10388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55386-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55386-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55385-5

  • Online ISBN: 978-3-662-55386-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics