Generalized Relations in Linguistics and Cognition | SpringerLink
Skip to main content

Generalized Relations in Linguistics and Cognition

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10388))

Abstract

Categorical compositional models of natural language exploit grammatical structure to calculate the meaning of sentences from the meanings of individual words. This approach outperforms conventional techniques for some standard NLP tasks. More recently, similar compositional techniques have been applied to conceptual space models of cognition.

Compact closed categories, particularly the category of finite dimensional vector spaces, have been the most common setting for categorical compositional models. When addressing a new problem domain, such as conceptual space models of meaning, a key problem is finding a compact closed category that captures the features of interest.

We propose categories of generalized relations as source of new, practical models for cognition and NLP. We demonstrate using detailed examples that phenomena such as fuzziness, metrics, convexity, semantic ambiguity and meaning that varies with context can all be described by relational models. Crucially, by exploiting a technical framework described in previous work of the authors, we also show how we can combine multiple features into a single model, providing a flexible family of new categories for categorical compositional modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The slightly unusual formulation of identities is to avoid definition by cases. This means they can be interpreted in the internal language of an arbitrary topos.

  2. 2.

    In fact, in order for composition to be associative, it is necessary to work with equivalence classes of spans. It is sufficient to consider representatives, and we do so to avoid distracting technicalities.

References

  1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 415–425. IEEE (2004)

    Google Scholar 

  2. Baez, J.C., Erbele, J.: Categories in control. Theory Appl. Categ. 30(24), 836–881 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Baez, J.C., Fong, B.: A compositional framework for passive linear networks. arXiv preprint arXiv:1504.05625 (2015)

  4. Baez, J.C., Fong, B., Pollard, B.S.: A compositional framework for Markov processes. J. Math. Phys. 57(3), 033301 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bankova, D., Coecke, B., Lewis, M., Marsden, D.: Graded entailment for compositional distributional semantics. arXiv preprint arXiv:1601.04908 (2015)

  6. Bankova, D.: Comparing meaning in language and cognition - p-hypononymy, concept combination, asymmetric similarity. Master’s thesis, University of Oxford (2015)

    Google Scholar 

  7. Barr, M.: Exact categories. Exact Categories and Categories of Sheaves. LNM, vol. 236, pp. 1–120. Springer, Heidelberg (1971). doi:10.1007/BFb0058580

    Chapter  Google Scholar 

  8. Barsalou, L.W.: Ideals, central tendency, and frequency of instantiation as determinants of graded structure in categories. J. Exp. Psychol. Learn. Mem. Cogn. 11(4), 629 (1985)

    Article  Google Scholar 

  9. Bolt, J., Coecke, B., Genovese, F., Lewis, M., Marsden, D., Piedeleu, R.: Interacting conceptual spaces. In: Kartsaklis, D., Lewis, M., Rimell, L. (eds.) Proceedings of the 2016 Workshop on Semantic Spaces at the Intersection of NLP, Physics and Cognitive Science, SLPCS@QPL 2016, Glasgow, Scotland, 11 June 2016. EPTCS, vol. 221, pp. 11–19 (2016). http://dx.doi.org/10.4204/EPTCS.221.2

  10. Bolt, J., Coecke, B., Genovese, F., Lewis, M., Marsden, D., Piedeleu, R.: Interacting conceptual spaces I: Grammatical composition of concepts. arXiv preprint arXiv:1703.08314 (2017)

  11. Bonchi, F., Sobocinski, P., Zanasi, F.: Full abstraction for signal flow graphs. ACM SIGPLAN Not. 50(1), 515–526 (2015)

    Article  MATH  Google Scholar 

  12. Borceux, F.: Handbook of Categorical Algebra: Volume 3, Categories of Sheaves. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  13. Borceux, F.: Handbook of Categorical Algebra: Volume 2, Categories and Structures, vol. 2. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  14. Coecke, B., Grefenstette, E., Sadrzadeh, M.: Lambek vs. Lambek: functorial vector space semantics and string diagrams for lambek calculus. Ann. Pure Appl. Logic 164(11), 1079–1100 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Coecke, B., Sadrzadeh, M., Clark, S.: Mathematical foundations for distributed compositional model of meaning. Lambek festschrift. Linguist. Anal. 36, 345–384 (2010)

    Google Scholar 

  16. Coecke, B., Kissinger, A.: Picturing Quantum Processes. A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press (2017, forthcoming)

    Google Scholar 

  17. Coecke, B., Paquette, E.O.: Categories for the practising physicist. In: Coecke, B. (ed.) New Structures for Physics, pp. 173–286. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Dale, R., Kehoe, C., Spivey, M.J.: Graded motor responses in the time course of categorizing atypical exemplars. Mem. Cogn. 35(1), 15–28 (2007)

    Article  Google Scholar 

  19. Dostal, M., Sadrzadeh, M.: Many valued generalised quantifiers for natural language in the DisCoCat model. Technical report, Queen Mary University of London (2016)

    Google Scholar 

  20. Fong, B.: The algebra of open and interconnected systems. Ph.D. thesis, University of Oxford (2016)

    Google Scholar 

  21. Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press, Cambridge (2004)

    Google Scholar 

  22. Gärdenfors, P.: The Geometry of Meaning: Semantics Based on Conceptual Spaces. MIT Press, Cambridge (2014)

    MATH  Google Scholar 

  23. Grefenstette, E., Sadrzadeh, M.: Experimental support for a categorical compositional distributional model of meaning. In: The 2014 Conference on Empirical Methods on Natural Language Processing, pp. 1394–1404 (2011). arXiv:1106.4058

  24. Hampton, J.A.: Disjunction of natural concepts. Mem. Cogn. 16(6), 579–591 (1988)

    Article  Google Scholar 

  25. Hampton, J.A.: Overextension of conjunctive concepts: evidence for a unitary model of concept typicality and class inclusion. J. Exp. Psychol. Learn. Mem. Cogn. 14(1), 12 (1988)

    Article  Google Scholar 

  26. Hofmann, D., Seal, G.J., Tholen, W.: Monoidal Topology: A Categorical Approach to Order, Metric, and Topology, vol. 153. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  27. Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium, vol. 1. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  28. Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium, vol. 2. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  29. Kartsaklis, D., Sadrzadeh, M.: Prior disambiguation of word tensors for constructing sentence vectors. In: The 2013 Conference on Empirical Methods on Natural Language Processing, pp. 1590–1601. ACL (2013)

    Google Scholar 

  30. Kissinger, A.: Finite matrices are complete for (dagger-)hypergraph categories. arXiv preprint arXiv:1406.5942 (2014)

  31. Lambek, J.: Type grammar revisited. In: Lecomte, A., Lamarche, F., Perrier, G. (eds.) LACL 1997. LNCS, vol. 1582, pp. 1–27. Springer, Heidelberg (1999). doi:10.1007/3-540-48975-4_1

    Chapter  Google Scholar 

  32. MacLane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer Science & Business Media, Heidelberg (2012)

    Google Scholar 

  33. Marsden, D., Genovese, F.: Custom hypergraph categories via generalized relations. In: CALCO 2017 (2017, to appear)

    Google Scholar 

  34. Marsden, D.: A graph theoretic perspective on CPM(Rel). In: Heunen, C., Selinger, P., Vicary, J. (eds.) Proceedings 12th International Workshop on Quantum Physics and Logic, QPL 2015, Oxford, UK, 15–17 July 2015. EPTCS, vol. 195, pp. 273–284 (2015). http://dx.doi.org/10.4204/EPTCS.195.20

  35. Osherson, D.N., Smith, E.E.: Gradedness and conceptual combination. Cognition 12(3), 299–318 (1982)

    Article  Google Scholar 

  36. Piedeleu, R., Kartsaklis, D., Coecke, B., Sadrzadeh, M.: Open system categorical quantum semantics in natural language processing. In: Moss, L.S., Sobocinski, P. (eds.) 6th Conference on Algebra and Coalgebra in Computer Science, CALCO 2015. LIPIcs, vol. 35, pp. 270–289. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

    Google Scholar 

  37. Rosch, E., Mervis, C.B.: Family resemblances: studies in the internal structure of categories. Cogn. Psychol. 7(4), 573–605 (1975)

    Article  Google Scholar 

  38. Sadrzadeh, M., Clark, S., Coecke, B.: The Frobenius anatomy of word meanings I: subject and object relative pronouns. J. Logic Comput. 23(6), ext044 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sadrzadeh, M., Clark, S., Coecke, B.: The Frobenius anatomy of word meanings II: possessive relative pronouns. J. Logic Comput. 26(2), exu027 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Schütze, H.: Automatic word sense discrimination. Comput. Linguist. 24(1), 97–123 (1998)

    Google Scholar 

  41. Selinger, P.: Dagger compact closed categories and completely positive maps. Electron. Not. Theor. Comput. Sci. 170, 139–163 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shepard, R.N., et al.: Toward a universal law of generalization for psychological science. Science 237(4820), 1317–1323 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sobocinski, P.: Graphical linear algebra. Mathematical blog. https://graphicallinearalgebra.net/

  44. Stubbe, I.: Categorical structures enriched in a quantaloid: categories and semicategories. Ph.D. thesis, Université Catholique de Louvain (2003)

    Google Scholar 

  45. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327 (1977)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by AFSOR grant “Algorithmic and Logical Aspects when Composing Meanings” and FQXi grant “Categorical Compositional Physics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Marsden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Coecke, B., Genovese, F., Lewis, M., Marsden, D. (2017). Generalized Relations in Linguistics and Cognition. In: Kennedy, J., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2017. Lecture Notes in Computer Science(), vol 10388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55386-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55386-2_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55385-5

  • Online ISBN: 978-3-662-55386-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics