Disjoint Fibring of Non-deterministic Matrices | SpringerLink
Skip to main content

Disjoint Fibring of Non-deterministic Matrices

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10388))

Abstract

In this paper we give a first definitive step towards endowing the general mechanism for combining logics known as fibring with a meaningful and useful semantics given by non-deterministic logical matrices (Nmatrices). We present and study the properties of two semantical operations: a unary operation of \(\omega \) -power of a given Nmatrix, and a binary operation of strict product of Nmatrices with disjoint similarity types (signatures). We show that, together, these operations can be used to characterize the disjoint fibring of propositional logics, when each of these logics is presented by a single Nmatrix. As an outcome, we also provide a decidability and complexity result about the resulting fibred logic. We illustrate the constructions with a few meaningful examples.

C. Caleiro—Work done under the scope of Project UID/EEA/50008/2013 of Instituto de Telecomunicações, financed by the applicable framework (FCT/MEC through national funds and co-funded by FEDER-PT2020). The first author also acknowledges the FCT postdoctoral grant SFRH/BPD/76513/2011. This research is part of the MoSH initiative of SQIG at Instituto de Telecomunicações.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \({\langle A,\cdot _{\mathbb {M}}\rangle }\) is a multi-algebra, see [10, 18].

References

  1. Avron, A., Lev, I.: Non-deterministic multiple-valued structures. J. Logic Comput. 15(3), 241–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avron, A., Zamansky, A.: Non-deterministic semantics for logical systems. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol. 16, pp. 227–304. Springer, Netherlands (2011). doi:10.1007/978-94-007-0479-4_4

    Chapter  Google Scholar 

  3. Baaz, M., Lahav, O., Zamansky, A.: Finite-valued semantics for canonical labelled calculi. J. Autom. Reasoning 51(4), 401–430 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Béziau, J.-Y.: The challenge of combining logics. Logic J. IGPL 19(4), 543 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bongini, M., Ciabattoni, A., Montagna, F.: Proof search and co-np completeness for many-valued logics. Fuzzy Sets Syst. 292, 130–149 (2016)

    Article  MathSciNet  Google Scholar 

  6. Marcelino, S., Caleiro, C., Rivieccio, U.: Characterizing finite-valuedness. Technical report, SQIG - Instituto de Telecomunicações and IST - U Lisboa, Portugal (2017). Submitted for publication, 2017. http://sqig.math.ist.utl.pt/pub/CaleiroC/17-CMR-finval.pdf

  7. Caleiro, C., Ramos, J.: From fibring to cryptofibring: a solution to the collapsing problem. Logica Univers. 1(1), 71–92 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caleiro, C., Sernadas, A.: Fibring logics. In: Béziau, J.-Y. (ed.) Universal Logic: An Anthology (From Paul Hertz to Dov Gabbay), pp. 389–396. Birkhäuser (2012)

    Google Scholar 

  9. Coniglio, M., Sernadas, A., Sernadas, C.: Preservation by fibring of the finite model property. J. Logic Comput. 21(2), 375–402 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corsini, P., Leoreanu, V.: Applications of Hyperstructure Theory. Advances in Mathematics. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  11. Crawford, J.M., Etherington, D.W.: A non-deterministic semantics for tractable inference. In: Mostow, J., Rich, C. (eds.) Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference, AAAI 98, IAAI 98, 26–30 July 1998, Madison, Wisconsin, USA, pp. 286–291. AAAI Press/The MIT Press (1998)

    Google Scholar 

  12. Fine, K., Schurz, G.: Transfer theorems for stratified multimodal logic. In: Copeland, J. (ed.) Logic and Reality: Proceedings of the Arthur Prior Memorial Conference, pp. 169–123. Cambridge University Press (1996)

    Google Scholar 

  13. Font, J.M.: Abstract Algebraic Logic. An Introductory Textbook. College Publications, London (2016)

    MATH  Google Scholar 

  14. FroCoS. The International Symposium on Frontiers of Combining Systems. http://frocos.cs.uiowa.edu

  15. Gabbay, D.: Fibred semantics and the weaving of logics part 1: modal and intuitionistic logics. J. Symbolic Logic 61(4), 1057–1120 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gabbay, D.: Fibring Logics. Oxford Logic Guides, vol. 38. Clarendon Press, Wotton-under-Edge (1999)

    MATH  Google Scholar 

  17. Gottwald, S.: A Treatise on Many-Valued Logics. Studies in Logic and Computation. Research Studies Press, Baldock (2001)

    MATH  Google Scholar 

  18. Grätzer, G.: A representation theorem for multi-algebras. Arch. Math. 13, 452–456 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  19. Humberstone, L.: Béziau on And and Or, pp. 283–307. Springer International Publishing, Cham (2015)

    MATH  Google Scholar 

  20. Kracht, M., Wolter, F.: Properties of independently axiomatizable bimodal logics. J. Symbolic Logic 56(4), 1469–1485 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marcelino, S., Caleiro, C.: Decidability and complexity of fibred logics without shared connectives. Logic J. IGPL 24(5), 673–707 (2016)

    Article  MathSciNet  Google Scholar 

  22. Marcelino, S., Caleiro, C.: On the characterization of fibred logics, with applications to conservativity and finite-valuedness. Journal of Logic and Computation (2016). https://doi.org/10.1093/logcom/exw023

  23. Marty, F.: Sur une generalization de la notion de group. In Proceedings of the 8th Congres des Mathematiciens Scandinave, pp. 45–49 (1934)

    Google Scholar 

  24. Rautenberg, W.: 2-element matrices. Stud. Logica. 40(4), 315–353 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schechter, J.: JUXTAPOSITION: a new way to combine logics. Rev. Symbolic Logic 4, 560–606 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sernadas, A., Sernadas, C., Caleiro, C.: Fibring of logics as a categorial construction. J. Logic Comput. 9(2), 149–179 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sernadas, A., Sernadas, C., Rasga, J., Coniglio, M.: On graph-theoretic fibring of logics. J. Log. Comput. 19(6), 1321–1357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shoesmith, D., Smiley, T.: Multiple-Conclusion Logic. Cambridge University Press, Cambridge (1978)

    Book  MATH  Google Scholar 

  29. Wójcicki, R.: Theory of Logical Calculi. Kluwer, Dordrecht (1988)

    Book  MATH  Google Scholar 

  30. Zanardo, A., Sernadas, A., Sernadas, C.: Fibring: completeness preservation. J. Symbolic Logic 66, 414–439 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Marcelino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Marcelino, S., Caleiro, C. (2017). Disjoint Fibring of Non-deterministic Matrices. In: Kennedy, J., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2017. Lecture Notes in Computer Science(), vol 10388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55386-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55386-2_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55385-5

  • Online ISBN: 978-3-662-55386-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics