Abstract
Let x be an m-sequence, a maximal length sequence produced by a linear feedback shift register. We show that x has maximal subword complexity function in the sense of Allouche and Shallit. We show that this implies that the nondeterministic automatic complexity \(A_N(x)\) is close to maximal: \(n/2-A_N(x)=O(\log ^2n)\), where n is the length of x. In contrast, Hyde has shown \(A_N(y)\le n/2+1\) for all sequences y of length n.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gammel, B.M., Göttfert, R.: Linear filtering of nonlinear shift-register sequences. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 354–370. Springer, Heidelberg (2006). doi:10.1007/11779360_28
Golomb, S.W.: Shift Register Sequences. With Portions Co-authored by Welch, L.R., Goldstein, R.M., Hales, A.W. Holden-Day Inc, San Francisco (1967)
Hyde, K., Kjos-Hanssen, B.: Nondeterministic automatic complexity of overlap-free and almost square-free words. Electron. J. Comb. 22(3), 18 (2015). Paper 3.22
New Wave Instruments: Linear feedback shift registers: Implementation, m-sequence properties, feedback tables (2010). http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm#M-Sequence%20Properties
Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory IT–15, 122–127 (1969)
Shallit, J., Wang, M.-W.: Automatic complexity of strings. J. Autom. Lang. Comb. 6(4), 537–554 (2001). 2nd Workshop on Descriptional Complexity of Automata, Grammars and Related Structures (London, ON, 2000)
Wolfram, S.: Solomon Golomb (1932–2015). http://blog.stephenwolfram.com/2016/05/solomon-golomb-19322016/
Acknowledgments
This work was partially supported by a grant from the Simons Foundation (#315188 to Bjørn Kjos-Hanssen). This material is based upon work supported by the National Science Foundation under Grant No. 1545707.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer-Verlag GmbH Germany
About this paper
Cite this paper
Kjos-Hanssen, B. (2017). Shift Registers Fool Finite Automata. In: Kennedy, J., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2017. Lecture Notes in Computer Science(), vol 10388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55386-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-662-55386-2_12
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-55385-5
Online ISBN: 978-3-662-55386-2
eBook Packages: Computer ScienceComputer Science (R0)