Shift Registers Fool Finite Automata | SpringerLink
Skip to main content

Shift Registers Fool Finite Automata

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10388))

Abstract

Let x be an m-sequence, a maximal length sequence produced by a linear feedback shift register. We show that x has maximal subword complexity function in the sense of Allouche and Shallit. We show that this implies that the nondeterministic automatic complexity \(A_N(x)\) is close to maximal: \(n/2-A_N(x)=O(\log ^2n)\), where n is the length of x. In contrast, Hyde has shown \(A_N(y)\le n/2+1\) for all sequences y of length n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gammel, B.M., Göttfert, R.: Linear filtering of nonlinear shift-register sequences. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 354–370. Springer, Heidelberg (2006). doi:10.1007/11779360_28

    Chapter  Google Scholar 

  2. Golomb, S.W.: Shift Register Sequences. With Portions Co-authored by Welch, L.R., Goldstein, R.M., Hales, A.W. Holden-Day Inc, San Francisco (1967)

    Google Scholar 

  3. Hyde, K., Kjos-Hanssen, B.: Nondeterministic automatic complexity of overlap-free and almost square-free words. Electron. J. Comb. 22(3), 18 (2015). Paper 3.22

    MathSciNet  MATH  Google Scholar 

  4. New Wave Instruments: Linear feedback shift registers: Implementation, m-sequence properties, feedback tables (2010). http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm#M-Sequence%20Properties

  5. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory IT–15, 122–127 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  6. Shallit, J., Wang, M.-W.: Automatic complexity of strings. J. Autom. Lang. Comb. 6(4), 537–554 (2001). 2nd Workshop on Descriptional Complexity of Automata, Grammars and Related Structures (London, ON, 2000)

    MathSciNet  MATH  Google Scholar 

  7. Wolfram, S.: Solomon Golomb (1932–2015). http://blog.stephenwolfram.com/2016/05/solomon-golomb-19322016/

Download references

Acknowledgments

This work was partially supported by a grant from the Simons Foundation (#315188 to Bjørn Kjos-Hanssen). This material is based upon work supported by the National Science Foundation under Grant No. 1545707.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjørn Kjos-Hanssen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Kjos-Hanssen, B. (2017). Shift Registers Fool Finite Automata. In: Kennedy, J., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2017. Lecture Notes in Computer Science(), vol 10388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55386-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55386-2_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55385-5

  • Online ISBN: 978-3-662-55386-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics