Graph Turing Machines | SpringerLink
Skip to main content

Graph Turing Machines

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10388))

Abstract

We consider graph Turing machines, a model of parallel computation on a graph, which provides a natural generalization of several standard computational models, including ordinary Turing machines and cellular automata. In this extended abstract, we give bounds on the computational strength of functions that graph Turing machines can compute. We also begin the study of the relationship between the computational power of a graph Turing machine and structural properties of its underlying graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aledo, J.A., Martinez, S., Valverde, J.C.: Graph dynamical systems with general Boolean states. Appl. Math. Inf. Sci. 9(4), 1803–1808 (2015)

    MathSciNet  Google Scholar 

  2. Aledo, J.A., Martinez, S., Valverde, J.C.: Parallel dynamical systems over graphs and related topics: a survey. J. Appl. Math. (2015). Article no. 594294

    Google Scholar 

  3. Angluin, D., Aspnes, J., Bazzi, R.A., Chen, J., Eisenstat, D., Konjevod, G.: Effective storage capacity of labeled graphs. Inform. Comput. 234, 44–56 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aubrun, N., Barbieri, S., Sablik, M.: A notion of effectiveness for subshifts on finitely generated groups. Theor. Comput. Sci. 661, 35–55 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baldwin, J.: Review of A New Kind of Science by Stephen Wolfram. Bull. Symb. Logic 10(1), 112–114 (2004)

    Article  Google Scholar 

  6. Barrett, C.L., Chen, W.Y.C., Zheng, M.J.: Discrete dynamical systems on graphs and Boolean functions. Math. Comput. Simul. 66(6), 487–497 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM Trans. Comput. Log. 4(4), 578–651 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohn, H.: Review of A New Kind of Science by Stephen Wolfram. MAA Reviews, Washington D.C. (2002)

    Google Scholar 

  9. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Gurevich, Y.: Kolmogorov machines and related issues. In: Current Trends in Theoretical Computer Science. World Scientific Series in Computer Science, vol. 40, pp. 225–234. World Scientific (1993)

    Google Scholar 

  11. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms. ACM Trans. Comput. Log. 1(1), 77–111 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Knuth, D.E.: The Art of Computer Programming: Volume 1: Fundamental Algorithms. Addison-Wesley, Boston (1968)

    MATH  Google Scholar 

  13. Kolmogorov, A.N., Uspensky, V.A.: On the definition of an algorithm. Uspekhi Mat. Nauk 13(4), 3–28 (1958)

    MathSciNet  Google Scholar 

  14. Lovász, L.: Very large graphs. In: Current Developments in Mathematics, vol. 2008, pp. 67–128. International Press, Somerville (2009)

    Google Scholar 

  15. Schönhage, A.: Storage modification machines. SIAM J. Comput. 9(3), 490–508 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Soare, R.I.: Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  17. Sutner, K.: Cellular automata and intermediate degrees. Theoret. Comput. Sci. 296(2), 365–375 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge (1987)

    MATH  Google Scholar 

  19. Woods, D., Neary, T.: The complexity of small universal Turing machines: a survey. Theoret. Comput. Sci. 410(4–5), 443–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tomislav Petrović, Linda Brown Westrick, and the anonymous referees of earlier versions for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cameron E. Freer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Ackerman, N.L., Freer, C.E. (2017). Graph Turing Machines. In: Kennedy, J., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2017. Lecture Notes in Computer Science(), vol 10388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55386-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55386-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55385-5

  • Online ISBN: 978-3-662-55386-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics