Abstract
In this paper, we propose a learning approach to adaptive performance tuning of database applications. The objective is to validate the opportunity to devise a tuning strategy that does not need prior knowledge of a cost model. Instead, the cost model is learned through reinforcement learning. We instantiate our approach to the use case of index tuning. We model the execution of queries and updates as a Markov decision process whose states are database configurations, actions are configuration changes, and rewards are functions of the cost of configuration change and query and update evaluation. During the reinforcement learning process, we face two important challenges: the unavailability of a cost model and the size of the state space. To address the former, we iteratively learn the cost model, in a principled manner, using regularization to avoid overfitting. To address the latter, we devise strategies to prune the state space, both in the general case and for the use case of index tuning. We empirically and comparatively evaluate our approach on a standard OLTP dataset. We show that our approach is competitive with state-of-the-art adaptive index tuning, which is dependent on a cost model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
By convergence we mean the first stable patch in Fig. 1 after the series of high spikes, around the 500\(^{th}\) query. The convergence point is qualitatively chosen by observing characteristics of the curve.
References
Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection of materialized views and indexes in sql databases. In: Proceedings of the 26th International Conference on Very Large Data Bases (VLDB 2000), pp. 496–505 (2000)
Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal partitioning into automated physical database design. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data (SIGMOD 2004), pp. 359–370 (2004)
Alagiannis, I., Idreos, S., Ailamaki, A.: H2o: a hands-free adaptive store. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (SIGMOD 2014) (2014)
Audibert, J.Y., Munos, R., Szepesvári, C.: Exploration-exploitation tradeoff using variance estimates in multi-armed bandits. Theoret. Comput. Sci. 410(19), 1876–1902 (2009)
Azefack, S., Aouiche, K., Darmont, J.: Dynamic index selection in data warehouses. CoRR abs/0809.1965 (2008). http://arXiv.org/abs/0809.1965
Basu, D., Lin, Q., Chen, W., Vo, H.T., Yuan, Z., Senellart, P., Bressan, S.: Cost-model oblivious database tuning with reinforcement learning. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 253–268. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22849-5_18
Benedikt, M., Bohannon, P., Bruns, G.: Data cleaning for decision support. In: Proceedings of the 1st International VLDB Workshop on Clean Databases (CleanDB 2006) (2006)
Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)
Bouchakri, R., Bellatreche, L., Hidouci, K.-W.: Static and incremental selection of multi-table indexes for very large join queries. In: Morzy, T., Valduriez, P., Bellatreche, L. (eds.) ADBIS 2015. LNCS, vol. 9282, pp. 43–56. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33074-2_4
Bruno, N., Chaudhuri, S.: An online approach to physical design tuning. In: Proceedings of the 23th IEEE International Conference on Data Engineering (ICDE 2007), pp. 826–835 (2007)
Bruno, N., Chaudhuri, S.: Constrained physical design tuning. Proc. VLDB Endow. 1(1), 4–15 (2008)
Bruno, N., Chaudhuri, S.: Interactive physical design tuning. In: Proceedings of the 26th IEEE International Conference on Data Engineering (ICDE 2010), pp. 1161–1164 (2010)
Bruno, N., Nehme, R.V.: Configuration-parametric query optimization for physical design tuning. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD 2008), pp. 941–952 (2008)
Chaudhuri, S., Narasayya, V.: Autoadmin: what-if index analysis utility. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data (SIGMOD 1998), pp. 367–378 (1998)
Difallah, D.E., Pavlo, A., Curino, C., Cudre-Mauroux, P.: Oltp-bench: an extensible testbed for benchmarking relational databases. Proc. VLDB Endow. 7(4), 277–288 (2013)
Gouriten, G., Maniu, S., Senellart, P.: Scalable, generic, and adaptive systems for focused crawling. In: Proceedings of the 25th ACM Conference on Hypertext and Social Media (HT 2014), pp. 35–45 (2014)
Hammer, M., Niamir, B.: A heuristic approach to attribute partitioning. In: Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data (SIGMOD 1979), pp. 93–101 (1979)
Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. J. Mach. Learn. Res. 4, 1107–1149 (2003)
Lai, T.L., Wei, C.Z.: Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. Ann. Stat. 154–166 (1982)
LeFevre, F., Sankaranarayanan, J., Hacigumus, H., Tatemura, J., Polyzotis, N., Carey, M.J.: Exploiting opportunistic physical design in large-scale data analytics. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (SIGMOD 2014) (2014)
Li, L., Gruenwald, L.: Self-managing online partitioner for databases (smopd): a vertical database partitioning system with a fully automatic online approach. In: Proceedings of the 17th International Database Engineering and Applications Symposium (IDEAS 2013), pp. 168–173 (2013)
Lightstone, S., Bhattacharjee, B.: Automated design of multidimensional clustering tables for relational databases. In: Proceedings of the 30th International Conference on Very Large Data Bases (VLDB 2004), pp. 1170–1181 (2004)
Lohman, G.M.: Is query optimization a “solved” problem? (2014). http://wp.sigmod.org/?p=1075
Luhring, M., Sattler, K.U., Schmidt, K., Schallehn, E.: Autonomous management of soft indexes. In: Proceedings of the 2nd International Workshop on Self-Managing Data Bases (SMDB 2007), pp. 450–458 (2007)
Malik, T., Wang, X., Dash, D., Chaudhary, A., Ailamaki, A., Burns, R.: Adaptive physical design for curated archives. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 148–166. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02279-1_11
Nielsen, F., Bhatia, R.: Matrix Information Geometry. Springer, Heidelberg (2013)
Papadomanolakis, S., Dash, D., Ailamaki, A.: Efficient use of the query optimizer for automated physical design. In: Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB 2007), pp. 1093–1104 (2007)
Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley-Interscience, Hoboken (2007)
Puterman, M.L.: Markov Decision Processes Discrete Stochastic Dynamic Programming, vol. 414. Wiley, Hoboken (2009)
Raab, F.: TPC-C - the standard benchmark for online transaction processing (OLTP). In: Gray, J. (ed.) The Benchmark Handbook. Morgan Kaufmann, Burlington (1993)
Ramakrishnan, R., Gehrke, J., Gehrke, J.: Database Management Systems, vol. 3. McGraw-Hill, New York (2003)
Rao, J., Zhang, C., Megiddo, N., Lohman, G.: Automating physical database design in a parallel database. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data (SIGMOD 2002), pp. 558–569 (2002)
Rasin, A., Zdonik, S.: An automatic physical design tool for clustered column-stores. In: Proceedings of the 16th International Conference on Extending Database Technology (EDBT 2013), pp. 203–214 (2013)
Rieser, V., Robinson, D.T., Murray-Rust, D., Rounsevell, M.: A comparison of genetic algorithms and reinforcement learning for optimising sustainable forest management. GeoComputation (2011)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (2015)
Rösch, P., Dannecker, L., Färber, F., Hackenbroich, G.: A storage advisor for hybrid-store databases. Proc. VLDB Endow. 5(12), 1748–1758 (2012)
Schnaitter, K., Polyzotis, N.: A benchmark for online index selection. In: 2009 IEEE 25th International Conference on Data Engineering, pp. 1701–1708, March 2009
Schnaitter, K., Abiteboul, S., Milo, T., Polyzotis, N.: On-line index selection for shifting workloads. In: Proceedings of the 2nd International Workshop on Self-Managing Data Bases (SMDB 2007), pp. 459–468 (2007)
Schnaitter, K., Polyzotis, N.: Semi-automatic index tuning: keeping dbas in the loop. Proc. VLDB Endow. 5(5), 478–489 (2012)
Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: LEO - DB2’s LEarning Optimizer. In: VLDB (2001)
Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge (1998)
Warmuth, M.K., Jagota, A.K.: Continuous and discrete-time nonlinear gradient descent: relative loss bounds and convergence. In: Electronic proceedings of the 5th International Symposium on Artificial Intelligence and Mathematics. Citeseer (1997)
White, D.J.: Markov Decision Processes. Wiley, New York (1993)
Young, P.: Recursive least squares estimation. In: Recursive Estimation and Time-Series Analysis, pp. 29–46. Springer, Berlin, Heidelberg (2011)
Zilio, D.C., Zuzarte, C., Lightstone, S., Ma, W., Lohman, G.M., Cochrane, R., Pirahesh, H., Colby, L.S., Gryz, J., Alton, E., Liang, D., Valentin, G.: Recommending materialized views and indexes with IBM DB2 design advisor. In: Proceedings of the 1st International Conference on Autonomic Computing (ICAC 2004), pp. 180–188 (2004)
Acknowledgement
We thank Prof. Haibo Chen for valuable feedback on this work. This research is funded by the National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme with the SP2 project of the Energy and Environmental Sustainability Solutions for Megacities – E2S2 programme.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Basu, D. et al. (2016). Regularized Cost-Model Oblivious Database Tuning with Reinforcement Learning. In: Hameurlain, A., Küng, J., Wagner, R., Chen, Q. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXVIII. Lecture Notes in Computer Science(), vol 9940. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53455-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-662-53455-7_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-53454-0
Online ISBN: 978-3-662-53455-7
eBook Packages: Computer ScienceComputer Science (R0)