A Method for Assessing Parameter Impact on Control-Flow Discovery Algorithms | SpringerLink
Skip to main content

A Method for Assessing Parameter Impact on Control-Flow Discovery Algorithms

  • Chapter
  • First Online:
Transactions on Petri Nets and Other Models of Concurrency XI

Part of the book series: Lecture Notes in Computer Science ((TOPNOC,volume 9930))

  • 785 Accesses

Abstract

Given a log L, a control-flow discovery algorithm f, and a quality metric m, this paper faces the following problem: what are the parameters in f that mostly influence its application in terms of m when applied to L? This paper proposes a method to face this problem, based on sensitivity analysis, a theory which has been successfully applied in other areas. Clearly, a satisfactory solution to this problem will be crucial to bridge the gap between process discovery algorithms and final users. Additionally, recommendation techniques and meta-techniques like determining the representational bias of an algorithm may benefit from solutions to the problem considered in this paper. The method has been evaluated over a set of logs and two different miners: the inductive miner and the flexible heuristic miner, and the experimental results witness the applicability of the general framework described in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This paper is an improved and extended version of [10].

  2. 2.

    \(\mathcal {P}(X)\) denotes the powerset of some set X.

  3. 3.

    Depending on the context, we will consider P either as a parameter list \([p_i,...,p_k]\) or its concrete instantiation \([v_i,...,v_k]\).

  4. 4.

    OAT stands for One (factor) At a Time.

  5. 5.

    A point in the parameter space is the result of assigning specific values to the parameters in the parameter list P: \(p_1\)=\(v_1\),..., \(p_k\)=\(v_k\).

  6. 6.

    The Node Arc Degree measure consists of the average of incoming and outgoing arcs of every node of the process model.

  7. 7.

    For computing \(EE_i\), \(\alpha _i - \beta _i\) is considered to be 1 when the parameter is changed from a disabled to an enabled state, or the other way around (e.g., the last parameter in Table 4).

  8. 8.

    All possible parameter settings the control-flow algorithm allows.

References

  1. Bengio, Y.: Gradient-based optimization of hyperparameters. Neural Comput. 12(8), 1889–1900 (2000)

    Article  Google Scholar 

  2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Burattin, A., Sperduti, A.: Automatic determination of parameters’ values for Heuristics Miner++. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8, July 2010

    Google Scholar 

  4. Campolongo, F., Cariboni, J., Saltelli, A.: An effective screening design for sensitivity analysis of large models. Environ. Model. Softw. 22(10), 1509–1518 (2007)

    Article  Google Scholar 

  5. Campolongo, F., Saltelli, A., Cariboni, J.: From screening to quantitative sensitivity analysis. a unified approach. Comput. Phys. Commun. 182(4), 978–988 (2011)

    Article  MATH  Google Scholar 

  6. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013 Workshops. LNBIP, vol. 171, pp. 66–78. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. Ma, L.: How to evaluate the performance of process discovery algorithms: a benchmark experiment to assess the performance of flexible heuristics miner. Master’s thesis, Eindhoven University of Technology, Eindhoven (2012)

    Google Scholar 

  8. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems. Evol. Comput. 4(1), 1–32 (1996)

    Article  Google Scholar 

  9. Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33(2), 161–174 (1991)

    Article  Google Scholar 

  10. Ribeiro, J., Carmona, J.: A method for assessing parameter impact on control-flow discovery algorithms. In: Proceedings of the International Workshop on Algorithms & Theories for the Analysis of Event Data, pp. 83–96 (2015)

    Google Scholar 

  11. Ribeiro, J., Carmona, J., Mısır, M., Sebag, M.: A recommender system for process discovery. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 67–83. Springer, Heidelberg (2014)

    Google Scholar 

  12. Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index. Comput. Phys. Commun. 181(2), 259–270 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S., Analysis, G.S.: Global Sensitivity Analysis: The Primer. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  14. Sobol, I.M.: Uniformly distributed sequences with an additional uniform property. USSR Comput. Math. Math. Phys. 16(5), 236–242 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. van der Aalst, W.M.: On the representational bias in process mining. In: 20th Proceedings IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises (WETICE 2011), Paris, France, 27–29 June 2011, pp. 2–7 (2011)

    Google Scholar 

  16. van der Aalst, W.M.P.: Process Mining: Discovery Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  17. vanden Broucke, S., Weerdt, J.D., Baesens, B., Vanthienen, J.: A comprehensive benchmarking framework (CoBeFra) for conformance analysis between procedural process models and event logs in ProM. In: IEEE Symposium on Computational Intelligence and Data Mining, Grand Copthorne Hotel, Singapore. IEEE (2013)

    Google Scholar 

  18. Verbeek, H.M.W., Buijs, J., van Dongen, B.F., van der Aalst, W.M.P.: ProM 6: The process mining toolkit. In: Demo at the 8th International Conference on Business Process Management, vol. 615 of CEUR-WS, pp. 34–39 (2010)

    Google Scholar 

  19. Weijters, A.J.M.M.: An optimization framework for process discovery algorithms. In: Proceedings of the International Conference on Data Mining, Las Vegas, Nevada, USA (2011)

    Google Scholar 

  20. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, CIDM, Paris, France. IEEE (2011)

    Google Scholar 

Download references

Acknowledgments

This work as been partially supported by funds from the Spanish Ministry for Economy and Competitiveness (MINECO) and the European Union (FEDER funds) under grant COMMAS (ref. TIN2013-46181-C2-1-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ribeiro, J., Carmona, J. (2016). A Method for Assessing Parameter Impact on Control-Flow Discovery Algorithms. In: Koutny, M., Desel, J., Kleijn, J. (eds) Transactions on Petri Nets and Other Models of Concurrency XI. Lecture Notes in Computer Science(), vol 9930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53401-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53401-4_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53400-7

  • Online ISBN: 978-3-662-53401-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics