Abstract
A graph is called {claw, diamond}-free if it contains neither a claw (a \(K_{1,3}\)) nor a diamond (a \(K_4\) with an edge removed) as an induced subgraph, or, equivalently, it is a line graph of a triangle-free graph. We consider the parameterized complexity of the {claw, diamond}-free Edge Deletion problem, where given a graph G and a parameter k, the question is whether one can remove at most k edges from G to obtain a {claw, diamond}-free graph. Our main result is that this problem admits a polynomial kernel. We also show that, even on instances with maximum degree 6, the problem is NP-complete and cannot be solved in time \(2^{o(k)}\cdot |V(G)|^{\mathcal {O}(1)}\), assuming the Exponential Time Hypothesis.
The research was supported by Polish National Science Centre grants DEC-2013/11/D/ST6/03073 (Michał Pilipczuk and Marcin Wrochna) and DEC-2012/05/D/ST6/03214 (Marek Cygan and Marcin Pilipczuk). Michał Pilipczuk is currently holding a post-doc position at Warsaw Center of Mathematics and Computer Science. Moreover research of Marcin Pilipczuk was partially supported by the Centre for Discrete Mathematics and its Applications (DIMAP) at the University of Warwick and by Warwick-QMUL Alliance in Advances in Discrete Mathematics and its Applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A more detailed discussion of the relation between these two problems is provided in the conclusions section.
- 2.
The proofs of statements marked with \((\spadesuit )\) are postponed to the full version of the paper [10].
References
Beineke, L.W.: Characterizations of derived graphs. J. Comb. Theor. 9(2), 129–135 (1970)
Bliznets, I., Fomin, F.V., Pilipczuk, M., Pilipczuk, M.: A subexponential parameterized algorithm for Interval Completion (2014). CoRR, abs/1402.3473
Bliznets, I., Fomin, F.V., Pilipczuk, M., Pilipczuk, M.: A subexponential parameterized algorithm for proper interval completion. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 173–184. Springer, Heidelberg (2014)
Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)
Cai, L., Cai, Y.: Incompressibility of H-free edge modification. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 84–96. Springer, Heidelberg (2013)
Cai, Y.: Polynomial kernelisation of \(H\)-free edge modification problems. Master’s thesis. The Chinese University of Hong Kong, Hong Kong (2012)
Chudnovsky, M., Seymour, P.D.: Claw-free graphs. IV. Decomposition theorem. J. Comb. Theor. Ser. B 98(5), 839–938 (2008)
Chudnovsky, M., Seymour, P.D.: Claw-free graphs. V. Global structure. J. Comb. Theor. Ser. B 98(6), 1373–1410 (2008)
Cygan, M., Kowalik, L., Pilipczuk, M.: Open problems from workshop on kernels (2013). http://worker2013.mimuw.edu.pl/slides/worker-opl.pdf
Cygan, M., Pilipczuk, M., Pilipczuk, M., van Leeuwen, E.J., Wrochna, M.: Polynomial kernelization for removing induced claws and diamonds (2015). CoRR, abs/1503.00704
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)
Drange, P.G., Fomin, F.V., Pilipczuk, M., Villanger, Y.: Exploring subexponential parameterized complexity of completion problems. In: STACS 2014, LIPIcs, vol. 25, pp. 288–299. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2014)
Drange, P.G., Pilipczuk, M.: A polynomial kernel for Trivially Perfect Editing. CoRR, abs/1412.7558 (2014)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006)
Fomin, F.V., Saurabh, S., Villanger, Y.: A polynomial kernel for proper interval vertex deletion. SIAM J. Discrete Math. 27(4), 1964–1976 (2013)
Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum fill-in. SIAM J. Comput. 42(6), 2197–2216 (2013)
Ghosh, E., Kolay, S., Kumar, M., Misra, P., Panolan, F., Rai, A., Ramanujan, M.S.: Faster parameterized algorithms for deletion to split graphs. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 107–118. Springer, Heidelberg (2012)
Guillemot, S., Havet, F., Paul, C., Perez, A.: On the (non-)existence of polynomial kernels for \(P_l\)-free edge modification problems. Algorithmica 65(4), 900–926 (2013)
Hermelin, D., Mnich, M., van Leeuwen, E.J.: Parameterized complexity of induced graph matching on claw-free graphs. Algorithmica 70(3), 513–560 (2014)
Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)
Kloks, T., Kratsch, D., Müller, H.: Dominoes. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 106–120. Springer, Heidelberg (1994)
Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discrete Appl. Math. 160(15), 2259–2270 (2012)
Kratsch, S., Wahlström, M.: Two edge modification problems without polynomial kernels. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 264–275. Springer, Heidelberg (2009)
Metelsky, Y., Tyshkevich, R.: Line graphs of Helly hypergraphs. SIAM J. Discrete Math. 16(3), 438–448 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cygan, M., Pilipczuk, M., Pilipczuk, M., van Leeuwen, E.J., Wrochna, M. (2016). Polynomial Kernelization for Removing Induced Claws and Diamonds. In: Mayr, E. (eds) Graph-Theoretic Concepts in Computer Science. WG 2015. Lecture Notes in Computer Science(), vol 9224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53174-7_31
Download citation
DOI: https://doi.org/10.1007/978-3-662-53174-7_31
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-53173-0
Online ISBN: 978-3-662-53174-7
eBook Packages: Computer ScienceComputer Science (R0)