An Extremal Series of Eulerian Synchronizing Automata | SpringerLink
Skip to main content

An Extremal Series of Eulerian Synchronizing Automata

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9840))

Included in the following conference series:

Abstract

We present an infinite series of n-state Eulerian automata whose reset words have length at least \((n^2-3)/2\). This improves the current lower bound on the length of shortest reset words in Eulerian automata. We conjecture that \((n^2-3)/2\) also forms an upper bound for this class and we experimentally verify it for small automata by an exhaustive computation.

M. Szykuła—Supported in part by the National Science Centre, Poland under project number 2015/17/B/ST6/01893.

V. Vorel—Research supported by the Czech Science Foundation grant GA14-10799S and the GAUK grant No. 52215.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 55–65. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Ananichev, D.S., Volkov, M.V.: Synchronizing generalized monotonic automata. Theor. Comput. Sci. 330(1), 3–13 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs with large exponents and slowly synchronizing automata. J. Math. Sci. 192(3), 263–278 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Béal, M.P., Berlinkov, M.V., Perrin, D.: A quadratic upper bound on the size of a synchronizing word in one-cluster automata. Int. J. Found. Comput. Sci. 22(2), 277–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berlinkov, M.V.: Synchronizing quasi-Eulerian and quasi-one-cluster Automata. Int. J. Found. Comput. Sci. 24(6), 729–745 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berlinkov, M., Szykuła, M.: Algebraic synchronization criterion and computing reset words. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 103–115. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  7. Biskup, M.T., Plandowski, W.: Shortest synchronizing strings for Huffman codes. Theor. Comput. Sci. 410(38–40), 3925–3941 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carpi, A., D’Alessandro, F.: Strongly transitive automata and the Černý conjecture. Acta Informatica 46(8), 591–607 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-fyzikálny Časopis Slovenskej Akadémie Vied 14(3), 208–216 (1964)

    Google Scholar 

  10. Dubuc, L.: Sur les automates circulaires et la conjecture de C̆erný. Informatique Théorique et Appl. 32, 21–34 (1998)

    MathSciNet  Google Scholar 

  11. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–510 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grech, M., Kisielewicz, A.: The Černý conjecture for automata respecting intervals of a directed graph. Discr. Math. Theor. Comput. Sci. 15(3), 61–72 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Gusev, V.: Lower bounds for the length of reset words in Eulerian automata. Int. J. Found. Comput. Sci. 24(2), 251–262 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gusev, V.V., Pribavkina, E.V.: Reset thresholds of automata with two cycle lengths. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 200–210. Springer, Heidelberg (2014)

    Google Scholar 

  15. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theor. Comput. Sci. 295(1–3), 223–232 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kari, J., Volkov, M.V.: Černý’s conjecture and the road coloring problem. In: Handbook of Automata, European Science Foundation (2013)

    Google Scholar 

  17. Kisielewicz, A., Kowalski, J., Szykuła, M.: Computing the shortest reset words of synchronizing automata. J. Combin. Optim. 29(1), 88–124 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kisielewicz, A., Szykuła, M.: Generating small automata and the Černý conjecture. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 340–348. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Kisielewicz, A., Szykuła, M.: Synchronizing automata with extremal properties. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 331–343. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  20. Kisielewicz, A., Kowalski, J., Szykula, M.: Experiments with synchronizing automata. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 176–188. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40946-7_15

    Chapter  Google Scholar 

  21. Pin, J.E.: On two combinatorial problems arising from automata theory. In: Proceedings of the International Colloquium on Graph Theory and Combinatorics. North-Holland Mathematics Studies, vol. 75, pp. 535–548 (1983)

    Google Scholar 

  22. Rystsov, I.K.: Estimation of the length of reset words for automata with simple idempotents. Cybern. Syst. Anal. 36(3), 339–344 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Steinberg, B.: The averaging trick and the Černý conjecture. Int. J. Found. Comput. Sci. 22(7), 1697–1706 (2011)

    Article  MATH  Google Scholar 

  24. Steinberg, B.: The Černý conjecture for one-cluster automata with prime length cycle. Theor. Comput. Sci. 412(39), 5487–5491 (2011)

    Article  MATH  Google Scholar 

  25. Trahtman, A.N.: The C̆erný conjecture for aperiodic automata. Discr. Math. Theor. Comput. Sci. 9(2), 3–10 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Volkov, M.V.: Synchronizing automata preserving a chain of partial orders. Theor. Comput. Sci. 410(37), 3513–3519 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marek Szykuła or Vojtěch Vorel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szykuła, M., Vorel, V. (2016). An Extremal Series of Eulerian Synchronizing Automata. In: Brlek, S., Reutenauer, C. (eds) Developments in Language Theory. DLT 2016. Lecture Notes in Computer Science(), vol 9840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53132-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53132-7_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53131-0

  • Online ISBN: 978-3-662-53132-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics