Abstract
We present an infinite series of n-state Eulerian automata whose reset words have length at least \((n^2-3)/2\). This improves the current lower bound on the length of shortest reset words in Eulerian automata. We conjecture that \((n^2-3)/2\) also forms an upper bound for this class and we experimentally verify it for small automata by an exhaustive computation.
M. Szykuła—Supported in part by the National Science Centre, Poland under project number 2015/17/B/ST6/01893.
V. Vorel—Research supported by the Czech Science Foundation grant GA14-10799S and the GAUK grant No. 52215.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 55–65. Springer, Heidelberg (2010)
Ananichev, D.S., Volkov, M.V.: Synchronizing generalized monotonic automata. Theor. Comput. Sci. 330(1), 3–13 (2005)
Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs with large exponents and slowly synchronizing automata. J. Math. Sci. 192(3), 263–278 (2013)
Béal, M.P., Berlinkov, M.V., Perrin, D.: A quadratic upper bound on the size of a synchronizing word in one-cluster automata. Int. J. Found. Comput. Sci. 22(2), 277–288 (2011)
Berlinkov, M.V.: Synchronizing quasi-Eulerian and quasi-one-cluster Automata. Int. J. Found. Comput. Sci. 24(6), 729–745 (2013)
Berlinkov, M., Szykuła, M.: Algebraic synchronization criterion and computing reset words. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 103–115. Springer, Heidelberg (2015)
Biskup, M.T., Plandowski, W.: Shortest synchronizing strings for Huffman codes. Theor. Comput. Sci. 410(38–40), 3925–3941 (2009)
Carpi, A., D’Alessandro, F.: Strongly transitive automata and the Černý conjecture. Acta Informatica 46(8), 591–607 (2009)
Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-fyzikálny Časopis Slovenskej Akadémie Vied 14(3), 208–216 (1964)
Dubuc, L.: Sur les automates circulaires et la conjecture de C̆erný. Informatique Théorique et Appl. 32, 21–34 (1998)
Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–510 (1990)
Grech, M., Kisielewicz, A.: The Černý conjecture for automata respecting intervals of a directed graph. Discr. Math. Theor. Comput. Sci. 15(3), 61–72 (2013)
Gusev, V.: Lower bounds for the length of reset words in Eulerian automata. Int. J. Found. Comput. Sci. 24(2), 251–262 (2013)
Gusev, V.V., Pribavkina, E.V.: Reset thresholds of automata with two cycle lengths. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 200–210. Springer, Heidelberg (2014)
Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theor. Comput. Sci. 295(1–3), 223–232 (2003)
Kari, J., Volkov, M.V.: Černý’s conjecture and the road coloring problem. In: Handbook of Automata, European Science Foundation (2013)
Kisielewicz, A., Kowalski, J., Szykuła, M.: Computing the shortest reset words of synchronizing automata. J. Combin. Optim. 29(1), 88–124 (2015)
Kisielewicz, A., Szykuła, M.: Generating small automata and the Černý conjecture. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 340–348. Springer, Heidelberg (2013)
Kisielewicz, A., Szykuła, M.: Synchronizing automata with extremal properties. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 331–343. Springer, Heidelberg (2015)
Kisielewicz, A., Kowalski, J., Szykula, M.: Experiments with synchronizing automata. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 176–188. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40946-7_15
Pin, J.E.: On two combinatorial problems arising from automata theory. In: Proceedings of the International Colloquium on Graph Theory and Combinatorics. North-Holland Mathematics Studies, vol. 75, pp. 535–548 (1983)
Rystsov, I.K.: Estimation of the length of reset words for automata with simple idempotents. Cybern. Syst. Anal. 36(3), 339–344 (2000)
Steinberg, B.: The averaging trick and the Černý conjecture. Int. J. Found. Comput. Sci. 22(7), 1697–1706 (2011)
Steinberg, B.: The Černý conjecture for one-cluster automata with prime length cycle. Theor. Comput. Sci. 412(39), 5487–5491 (2011)
Trahtman, A.N.: The C̆erný conjecture for aperiodic automata. Discr. Math. Theor. Comput. Sci. 9(2), 3–10 (2007)
Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)
Volkov, M.V.: Synchronizing automata preserving a chain of partial orders. Theor. Comput. Sci. 410(37), 3513–3519 (2009)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Szykuła, M., Vorel, V. (2016). An Extremal Series of Eulerian Synchronizing Automata. In: Brlek, S., Reutenauer, C. (eds) Developments in Language Theory. DLT 2016. Lecture Notes in Computer Science(), vol 9840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53132-7_31
Download citation
DOI: https://doi.org/10.1007/978-3-662-53132-7_31
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-53131-0
Online ISBN: 978-3-662-53132-7
eBook Packages: Computer ScienceComputer Science (R0)