Parameterized Lower Bounds and Dichotomy Results for the NP-completeness of H-free Edge Modification Problems | SpringerLink
Skip to main content

Parameterized Lower Bounds and Dichotomy Results for the NP-completeness of H-free Edge Modification Problems

  • Conference paper
  • First Online:
LATIN 2016: Theoretical Informatics (LATIN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9644))

Included in the following conference series:

Abstract

For a graph H, the \(H\)-free Edge Deletion problem asks whether there exist at most k edges whose deletion from the input graph G results in a graph without any induced copy of H. \(H\)-free Edge Completion and \(H\)-free Edge Editing are defined similarly where only completion (addition) of edges are allowed in the former and both completion and deletion are allowed in the latter. We completely settle the classical complexities of these problems by proving that \(H\)-free Edge Deletion is NP-complete if and only if H is a graph with at least two edges, \(H\)-free Edge Completion is NP-complete if and only if H is a graph with at least two non-edges and \(H\)-free Edge Editing is NP-complete if and only if H is a graph with at least three vertices. Our result on \(H\)-free Edge Editing resolves a conjecture by Alon and Stav (2009). Additionally, we prove that, these NP-complete problems cannot be solved in parameterized subexponential time, i.e., in time \(2^{o(k)}\cdot |G|^{O(1)}\), unless Exponential Time Hypothesis fails. Furthermore, we obtain implications on the incompressibility of these problems.

R.B. Sandeep—supported by TCS Research Scholarship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alon, N., Stav, U.: Hardness of edge-modification problems. Theor. Comput. Sci. 410(47–49), 4920–4927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aravind, N.R., Sandeep, R.B., Sivadasan, N.: Parameterized lower bound and NP-completeness of some H-free edge deletion problems. In: Lu, Z., et al. (eds.) COCOA 2015. LNCS, vol. 9486, pp. 424–438. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26626-8_31

    Chapter  Google Scholar 

  3. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)

    Article  MATH  Google Scholar 

  4. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, L., Cai, Y.: Incompressibility of H-free edge modification problems. Algorithmica 71(3), 731–757 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yufei, C.: Polynomial kernelisation of H-free edge modification problems. M.phil thesis, Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (2012)

    Google Scholar 

  7. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  8. Drange, P.G.: Parameterized Graph Modification Algorithms. PhD dissertation, University of Bergen (2015)

    Google Scholar 

  9. El-Mallah, E.S., Colbourn, C.J.: The complexity of some edge deletion problems. IEEE Trans. Circuits Syst. 35(3), 354–362 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-based data clustering with overlaps. Discrete Optim. 8(1), 2–17 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Paul, W., Goldberg, M.C., Kaplan, H., Shamir, R.: Four strikes against physical mapping of DNA. J. Comput. Biol. 2(1), 139–152 (1995)

    Article  Google Scholar 

  12. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discrete Appl. Math. 160(15), 2259–2270 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kratsch, S., Wahlström, M.: Two edge modification problems without polynomial kernels. Discrete Optim. 10(3), 193–199 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rose, D.J.: A Graph-theoretic Study of the Numerical Solution of Sparse Positive Definite Systems of Linear Equations. Academic Press, Cambridge (1972). pp. 183–217

    Book  MATH  Google Scholar 

  15. Sandeep, R.B., Sivadasan, N.: Parameterized lower bound and improved Kernel for diamond-free edge deletion. In: Husfeldt, T., Kanj, I. (eds) IPEC Leibniz International Proceedings in Informatics (LIPIcs), vol. 43, pp. 365–376. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

    Google Scholar 

  16. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Sandeep .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aravind, N.R., Sandeep, R.B., Sivadasan, N. (2016). Parameterized Lower Bounds and Dichotomy Results for the NP-completeness of H-free Edge Modification Problems. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49529-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49528-5

  • Online ISBN: 978-3-662-49529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics