$$(k,n-k)$$ -Max-Cut: An $${\mathcal O}^*(2^p)$$ -Time Algorithm and a Polynomial Kernel | SpringerLink
Skip to main content

\((k,n-k)\)-Max-Cut: An \({\mathcal O}^*(2^p)\)-Time Algorithm and a Polynomial Kernel

  • Conference paper
  • First Online:
LATIN 2016: Theoretical Informatics (LATIN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9644))

Included in the following conference series:

Abstract

Max-Cut is a well-known classical NP-hard problem. This problem asks whether the vertex-set of a given graph \(G=(V,E)\) can be partitioned into two disjoint subsets, A and B, such that there exist at least p edges with one endpoint in A and the other endpoint in B. It is well known that if \(p\le |E|/2\), the answer is necessarily positive. A widely-studied variant of particular interest to parameterized complexity, called \((k,n-k)\)-Max-Cut, restricts the size of the subset A to be exactly k. For the \((k,n-k)\)-Max-Cut problem, we obtain an \({\mathcal O}^*(2^p)\)-time algorithm, improving upon the previous best \({\mathcal O}^*(4^{p+o(p)})\)-time algorithm, as well as the first polynomial kernel. Our algorithm relies on a delicate combination of methods and notions, including independent sets, depth-search trees, bounded search trees, dynamic programming and treewidth, while our kernel relies on examination of the closed neighborhood of the neighborhood of a certain independent set of the graph G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ageev, A.A., Sviridenko, M.: Approximation algorithms for maximum coverage and max cutwith given sizes of parts. In: IPCO, pp. 17–30 (1999)

    Google Scholar 

  2. Binkele-Raible, D.: Amortized analysis of exponential time and parameterized algorithms: Measure & conquer and reference search trees. Ph.D. thesis, Universit\(\rm \ddot{a}\)t Trier (2010)

    Google Scholar 

  3. Bonnet, E., Escoffier, B., Paschos, V.T., Tourniaire, E.: Multi-parameter analysis for local graph partitioning problems: using greediness for parameterization. Algorithmica 71(3), 566–580 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, L.: Parameter complexity of cardinality constrained optimization problems. Comput. J. 51(1), 102–121 (2008)

    Article  Google Scholar 

  5. Cai, L., Chan, S.M., Chan, S.O.: Random separation: a new method for solving fixed-cardinality optimization problems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Crowston, R., Gutin, G., Jones, M., Muciaccia, G.: Maximum balanced subgraph problem parameterized above lower bound. Theor. Comput. Sci. 513, 53–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Crowston, R., Jones, M., Mnich, M.: Max-cut parameterized above the Edwards-Erdős bound. Algorithmica 72(3), 734–757 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Switzerland (2015)

    Book  MATH  Google Scholar 

  9. Downey, R.G., Fellows, M.: Fundamentals of Parameterized Complexity. Springer, London (2013)

    Book  MATH  Google Scholar 

  10. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SICOMP 37(1), 319–357 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Raman, V., Saurabh, S.: Improved fixed parameter tractable algorithms for two “edge” problems: MAXCUT and MAXDAG. Inf. Process. Lett. 104(2), 65–72 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shachnai, H., Zehavi, M.: Parameterized algorithms for graph partitioning problems. In: WG, pp. 384–395 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meirav Zehavi .

Editor information

Editors and Affiliations

Appendix

Appendix

Treewidth: A tree decomposition of a graph G is a pair \((D,\beta )\), where D is a rooted tree and \(\beta : V(D)\rightarrow 2^{V(G)}\) is a mapping that satisfies the following conditions.

  • For each vertex \(v\in V(G)\), the set \(\{d\in V(D): v\in \beta (d)\}\) induces a nonempty and connected subtree of D.

  • For each edge \(\{v,u\}\in E(G)\), there exists \(d\in V(D)\) such that \(\{v,u\}\subseteq \beta (d)\).

The set \(\beta (d)\) is called the bag at d, and the width of \((D,\beta )\) is the size of the largest bag minus one (i.e., \(\max _{d\in V(D)}|\beta (d)|-1\)). The treewidth of G, \(tw_G\), is the minimum width among all possible tree decompositions of G.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saurabh, S., Zehavi, M. (2016). \((k,n-k)\)-Max-Cut: An \({\mathcal O}^*(2^p)\)-Time Algorithm and a Polynomial Kernel. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49529-2_51

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49528-5

  • Online ISBN: 978-3-662-49529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics