Simple Approximation Algorithms for Balanced MAX 2SAT | SpringerLink
Skip to main content

Simple Approximation Algorithms for Balanced MAX 2SAT

  • Conference paper
  • First Online:
LATIN 2016: Theoretical Informatics (LATIN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9644))

Included in the following conference series:

  • 1027 Accesses

Abstract

We study simple algorithms for the balanced MAX 2SAT problem, where we are given weighted clauses of length one and two with the property that for each variable x the total weight of clauses that x appears in equals the total weight of clauses for \(\overline{x}\). We show that such instances have a simple structural property in that any optimal solution can satisfy at most the total weight of the clauses minus half the total weight of the unit clauses. Using this property, we are able to show that a large class of greedy algorithms, including Johnson’s algorithm, gives a \(\frac{3}{4}\)-approximation algorithm for balanced MAX 2SAT; a similar statement is false for general MAX 2SAT instances. We further give a spectral 0.81-approximation algorithm for balanced MAX E2SAT instances (in which each clause has exactly 2 literals) by a reduction to a spectral algorithm of Trevisan for the maximum colored cut problem. We provide experimental results showing that this spectral algorithm performs well and is slightly better than Johnson’s algorithm and the Goemans-Williamson semidefinite programming algorithm on balanced MAX E2SAT instances.

A. Paul—Supported by an NDSEG fellowship.

M. Poloczek—Supported by the Alexander von Humboldt Foundation within the Feodor Lynen program and by NSF grant CCF-1115256.

D.P. Williamson—Supported in part by NSF grant CCF-1115256.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Argelich, J., Li, C.M., Manyà, F., Planes, J.: MAX-SAT 2014: Ninth Max-SAT evaluation. www.maxsat.udl.cat/14/. Accessed 9 January 2015

  2. Austrin, P.: Balanced MAX 2-SAT might not be the hardest. In: STOC, pp. 189–197 (2007)

    Google Scholar 

  3. Belov, A., Diepold, D., Heule, M.J., Järvisalo, M.: Proceedings of the SAT COMPETITION 2014: solver and benchmark descriptions (2014)

    Google Scholar 

  4. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: A tight linear time (1/2)-approximation for unconstrained submodular maximization. In: FOCS, pp. 649–658 (2012)

    Google Scholar 

  5. Chan, S.O., Lee, J., Raghavendra, P., Steurer, D.: Approximate constraint satisfaction requires large LP relaxations. In: FOCS, pp. 350–359 (2013)

    Google Scholar 

  6. Feige, U., Goemans, M.X.: Approximating the value of two prover proof systems, with applications to MAX 2SAT and MAX DICUT. In: ISTCS, pp. 182–189 (1995)

    Google Scholar 

  7. Goemans, M.X., Williamson, D.P.: New 3/4-approximation algorithms for the maximum satisfiability problem. SIAM J. Discrete Math. 7(4), 656–666 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37(1), 319–357 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lewin, M., Livnat, D., Zwick, U.: Improved rounding techniques for the MAX 2-SAT and MAX DI-CUT problems. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 67–82. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Matuura, S., Matsui, T.: \(0.935\)-approximation randomized algorithm for MAX-2SAT and its derandomization. Technical report METR 2001-03, Department of Mathematical Engineering and Physics, the University of Tokyo, Japan (2001)

    Google Scholar 

  13. Poloczek, M.: Bounds on greedy algorithms for MAX SAT. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 37–48. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Poloczek, M.: Greedy Algorithms for MAX SAT and Maximum Matching: Their Power and Limitations. Ph.D. thesis, Johann Wolfgang Goethe-Universitaet, Frankfurt am Main (2012)

    Google Scholar 

  15. Poloczek, M.: An experimental evaluation of fast approximation algorithms for the maximum satisfiability problem (2015) (in preparation)

    Google Scholar 

  16. Poloczek, M., Schnitger, G.: Randomized variants of Johnson’s algorithm for MAX SAT. In: SODA, pp. 656–663 (2011)

    Google Scholar 

  17. Poloczek, M., Schnitger, G., Williamson, D.P., van Zuylen, A.: Greedy algorithms for the maximum satisfiability problem: simple algorithms and inapproximability bounds (2015) (in preparation)

    Google Scholar 

  18. Poloczek, M., Williamson, D.P., van Zuylen, A.: On some recent approximation algorithms for MAX SAT. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 598–609. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  19. Soto, J.A.: Improved analysis of a Max-Cut algorithm based on spectral partitioning. SIAM J. Discrete Math. 29(1), 259–268 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Trevisan, L.: Max Cut and the smallest eigenvalue. SIAM J. Comput. 41(6), 1769–1786 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yannakakis, M.: On the approximation of maximum satisfiability. J. Algorithms 17(3), 475–502 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. van Zuylen, A.: Simpler 3/4-approximation algorithms for MAX SAT. In: WAOA, pp. 188–197 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Poloczek .

Editor information

Editors and Affiliations

Appendices

A Soto’s Bound for MAX CC

Recall from Sect. 4 that \(\mathrm {LB}_{G}(\varepsilon )\) is a lower bound on the fraction of weight achieved by Trevisan’s spectral algorithm on G, where G is the MAX CC instance that was created by our reduction on the balanced set of 2-clauses C.

Lemma 2

(Sect. 3.1 in  [19]). Let \(\varepsilon _0\) be the unique solution of the equation \(\frac{1}{1 + 2 \sqrt{\varepsilon (1- \varepsilon )}} = \frac{ -1 + \sqrt{4 \varepsilon ^2 - 8 \varepsilon + 5}}{2 (1-\varepsilon )} .\) Then,

If \(\varepsilon \ge \frac{1}{3}\),

$$\begin{aligned} \mathrm {LB}_G(\varepsilon ) := \frac{1}{2} . \end{aligned}$$

If \(\varepsilon _0 \le \varepsilon \le \frac{1}{3}\),

$$\begin{aligned} \mathrm {LB}_G(\varepsilon ) := \frac{1}{2} \cdot \bigg (&\varepsilon - 1 + \sqrt{4 \varepsilon ^2 - 8 \varepsilon + 5} - \varepsilon \ln \left( \frac{1+ \sqrt{4 \varepsilon ^2 - 8 \varepsilon + 5}}{8 \varepsilon } \right) \\&+ \frac{ \sqrt{5}}{5} \varepsilon \ln \left( \frac{5 - 4 \varepsilon + \sqrt{5 (4 \varepsilon ^2 - 8 \varepsilon +5)}}{(11 + 5 \sqrt{5}) \varepsilon } \right) \bigg ). \end{aligned}$$

If \(\varepsilon \le \varepsilon _0\),

$$\begin{aligned} \mathrm {LB}_G(\varepsilon ) :=&\frac{1}{2} \cdot \bigg ( \varepsilon \left( 1 - \frac{3}{\varepsilon _0} \right) + 2 + \frac{\varepsilon }{\varepsilon _0} \sqrt{4 \varepsilon _0^2 - 8 \varepsilon _0 +5} \\&- \varepsilon \ln \left( \frac{1 + \sqrt{4 \varepsilon _0^2 - 8 \varepsilon _0 + 5}}{8 \varepsilon _0} \right) \\&+ \frac{ \sqrt{5}}{5} \varepsilon \ln \left( \frac{5 - 4 \varepsilon _0 + \sqrt{5 (4 \varepsilon _0^2 - 8 \varepsilon _0 +5)}}{(11 + 5 \sqrt{5}) \varepsilon _0} \right) \\&+ 16 \varepsilon \ln \left( \frac{ \sqrt{\varepsilon } + \sqrt{1- \varepsilon }}{\sqrt{\varepsilon } + \sqrt{ \frac{\varepsilon }{\varepsilon _0} - \varepsilon }} \right) + 8 \varepsilon \frac{ \sqrt{ \varepsilon _0 (1- \varepsilon _0)} +1 - 2 \varepsilon _0}{ \varepsilon _0 + \sqrt{\varepsilon _0 (1- \varepsilon _0)}}\\&- 8 \sqrt{\varepsilon } \frac{ \sqrt{ \varepsilon (1- \varepsilon )} +1 - 2 \varepsilon }{ \sqrt{\varepsilon } + \sqrt{\varepsilon (1- \varepsilon )}} \bigg ) . \end{aligned}$$

B Dependency of the Approximation Ratio on \(\alpha \) and \(\beta \)

Fig. 1.
figure 1

Approximation ratio for \((\alpha ,\beta )\) pairs, where \(\beta = 1 - \alpha \). \(\alpha \) is given on the horizontal axis and the approximation ratio on the vertical axis.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paul, A., Poloczek, M., Williamson, D.P. (2016). Simple Approximation Algorithms for Balanced MAX 2SAT. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49529-2_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49528-5

  • Online ISBN: 978-3-662-49529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics