Edge-Editing to a Dense and a Sparse Graph Class | SpringerLink
Skip to main content

Edge-Editing to a Dense and a Sparse Graph Class

  • Conference paper
  • First Online:
LATIN 2016: Theoretical Informatics (LATIN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9644))

Included in the following conference series:

  • 1025 Accesses

Abstract

We consider a graph edge-editing problem, where the goal is to transform a given graph G into a disjoint union of two graphs from a pair of given graph classes, investigating what properties of the classes make the problem fixed-parameter tractable. We focus on the case when the first class is dense, i.e. every such graph G has minimum degree at least \(|V(G)| - \delta \) for a constant \(\delta \), and assume that the cost of editing to this class is fixed-parameter tractable parameterized by the cost. Under the assumptions that the second class either has bounded maximum degree, or is edge-monotone, can be defined in \(\text {MSO}_2\), and has bounded treewidth, we prove that the problem is fixed-parameter tractable parameterized by the cost. We also show that the problem is fixed-parameter tractable parameterized by degeneracy if the second class consists of independent sets and Subgraph Isomorphism is fixed-parameter tractable for the input graphs. On the other hand, we prove that parameterization by degeneracy is in general \(\text { W[1]}\)-hard even for editing to cliques and independent sets.

M. Kotrbčík and S. Ordyniak—Research funded by the Employment of Newly Graduated Doctors of Science for Scientific Excellence (CZ.1.07/2.3.00/30.0009) and the Austrian Science Fund (FWF, project P26696).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that in the case of r-regular graphs the smallest graph in the class has \(r+1\) vertices.

References

  1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)

    Article  MATH  Google Scholar 

  3. Bodlaender, H., Heggernes, P., Lokshtanov, D.: Graph modification problems (Dagstuhl seminar 14071). Dagstuhl Rep. 4(2), 38–59 (2014)

    Google Scholar 

  4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bova, S., Ganian, R., Szeider, S.: Model checking existential logic on partially ordered sets. In: CSL-LICS. ACM (2014)

    Google Scholar 

  6. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inform. Process. Lett. 58(4), 171–176 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M., Schlotter, I.: Parameterized complexity of eulerian deletion problems. Algorithmica 68(1), 41–61 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Damaschke, P., Mogren, O.: Editing simple graphs. J. Graph Algorithms Appl. 18(4), 557–576 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)

    Book  MATH  Google Scholar 

  10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. 41. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  11. Fomin, F., Golovach, P.: Long circuits and large euler subgraphs. SIAM J. Discrete Math. 28(2), 878–892 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. In: STOC. ACM (2014)

    Google Scholar 

  13. Hartung, S., Nichterlein, A., Niedermeier, R., Suchý, O.: A refined complexity analysis of degree anonymization in graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 594–606. Springer, Heidelberg (2013)

    Google Scholar 

  14. Hüffner, F., Komusiewicz, C., Nichterlein, A.: Editing graphs into few cliques: complexity, approximation, and kernelization schemes. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 410–421. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  15. Kováč, I., Selečéniová, I., Steinová, M.: On the clique editing problem. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 469–480. Springer, Heidelberg (2014)

    Google Scholar 

  16. Mathieson, L., Szeider, S.: Editing graphs to satisfy degree constraints: a parameterized approach. J. Comput. Syst. Sci. 78(1), 179–191 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced subgraphs. J. Discrete Algorithms 7(2), 181–190 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nastos, J., Gao, Y.: Familial groups in social networks. Soc. Netw. 35(3), 439–450 (2013)

    Article  Google Scholar 

  19. Nešetřil, J., de Mendez, P.O.: Sparsity: Graphs, Structures, and Algorithms. Algorithms and Combinatorics, vol. 28. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  20. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  21. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. Comput. Syst. Sci. 67(4), 757–771 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rivest, R.L., Vuillemin, J.: On recognizing graph properties from adjacency matrices. Theor. Comput. Sci. 3(3), 371–384 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: STOC, pp. 253–264. ACM (1978)

    Google Scholar 

  24. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Ordyniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kotrbčík, M., Královič, R., Ordyniak, S. (2016). Edge-Editing to a Dense and a Sparse Graph Class. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49529-2_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49528-5

  • Online ISBN: 978-3-662-49529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics