Abstract
Given a rewritable text T of length n on an alphabet of size \(\sigma \), we propose an online algorithm computing the sparse suffix array and the sparse longest common prefix array of T in \(\mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( c \sqrt{\lg n} \right. + \left. m \lg m \lg n \lg ^* n\right) \) time by using the text space and \(\mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( m\right) \) additional working space, where \(m \le n\) is the number of suffixes to be sorted (provided online and arbitrarily), and \(c \ge m\) is the number of characters that must be compared for distinguishing the designated suffixes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The original version prefers the left meta-block, but we change it for a more stable behavior.
- 2.
The check is relaxed since nodes with different surnames cannot have the same name.
References
Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic texts. In: SODA, pp. 819–828 (2000)
Bille, P., Fischer, J., Gørtz, I.L., Kopelowitz, T., Sach, B., Vildhøj, H.W.: Sparse suffix tree construction in small space. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 148–159. Springer, Heidelberg (2013)
Bille, P., Gørtz, I.L., Knudsen, M.B.T., Lewenstein, M., Vildhøj, H.W.: Longest common extensions in sublinear space. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 65–76. Springer, Heidelberg (2015)
Bille, P., Gørtz, I.L., Sach, B., Vildhøj, H.W.: Time-space trade-offs for longest common extensions. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 293–305. Springer, Heidelberg (2012)
Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. ACM Trans. Algorithms 3(1), 2 (2007)
Fischer, J., I, T., Köppl, D.: Deterministic sparse suffix sorting on rewritable texts. arXiv:1509.07417 (2015)
Franceschini, G., Grossi, R.: No sorting? better searching! In: Foundations of Computer Science, pp. 491–498, October 2004
I, T., Kärkkäinen, J., Kempa, D.: Faster sparse suffix sorting. In: STACS, pp. 386–396 (2014)
Irving, R.W., Love, L.: The suffix binary search tree and suffix AVL tree. J. Discrete Algorithms 1(5–6), 387–408 (2003)
Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53(6), 918–936 (2006)
Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Foundations of Computer Science, FOCS, pp. 596–604 (1999)
Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equality-tests in polylogarithmic time. In: SODA, pp. 213–222. SIAM (1994)
Nishimoto, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Dynamic index, LZ factorization, and LCE queries in compressed space. arXiv:1504.06954 (2015)
Nong, G., Zhang, S., Chan, W.H.: Two efficient algorithms for linear time suffix array construction. IEEE Trans. Comput. 60(10), 1471–1484 (2011)
Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction algorithms. ACM Comput. Surv. 39(2), 4 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fischer, J., I., T., Köppl, D. (2016). Deterministic Sparse Suffix Sorting on Rewritable Texts. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-662-49529-2_36
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49528-5
Online ISBN: 978-3-662-49529-2
eBook Packages: Computer ScienceComputer Science (R0)