From Discrepancy to Majority | SpringerLink
Skip to main content

From Discrepancy to Majority

  • Conference paper
  • First Online:
LATIN 2016: Theoretical Informatics (LATIN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9644))

Included in the following conference series:

  • 987 Accesses

Abstract

We show how to select an item with the majority color from n two-colored items, given access to the items only through an oracle that returns the discrepancy of subsets of k items. We use \(n/\lfloor \tfrac{k}{2}\rfloor +O(k)\) queries, improving a previous method by De Marco and Kranakis that used \(n-k+k^2/2\) queries. We also prove a lower bound of \({n/(k-1)-O(n^{1/3})}\) on the number of queries needed, improving a lower bound of \(\lfloor n/k\rfloor \) by De Marco and Kranakis.

David Eppstein was supported in part by NSF grant CCF-1228639.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    There is a bug in their method for odd k, in Case 1 of Theorem 4.1, when \(i=\lfloor k/2\rfloor \).

References

  1. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and its Applications. Ser. Appl. Math., vol. 12, 2nd edn. World Scientific, New York (2000)

    MATH  Google Scholar 

  2. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved combinatorial group testing algorithms for real-world problem sizes. SIAM J. Comput. 36(5), 1360–1375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Valiant, L.G.: Short monotone formulae for the majority function. J. Algor. 5(3), 363–366 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Combinatorial pair testing: distinguishing workers from slackers. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 316–327. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. De Marco, G., Kranakis, E.: Searching for majority with \(k\)-tuple queries. Discrete Math. Algor. Appl. 7(2), 1550009 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alonso, L., Reingold, E.M., Schott, R.: Determining the majority. Inform. Process. Lett. 47(5), 253–255 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alonso, L., Reingold, E.M., Schott, R.: The average-case complexity of determining the majority. SIAM J. Comput. 26(1), 1–14 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Saks, M.E., Werman, M.: On computing majority by comparisons. Combinatorica 11(4), 383–387 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beck, J., Chen, W.W.L.: Irregularities of Distribution. Cambridge Tracts in Mathematics, vol. 89. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  10. Gerbner, D., Keszegh, B., Pálvölgyi, D., Patkós, B., Vizer, M., Wiener, G.: Finding a majority ball with majority answers. In: Proceedings of the 8th European Conference on Combinatorics, Graph Theory, and Applications (EuroComb 2015). Elect. Notes Discrete Math., vol. 49, pp. 345–351. Elsevier (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eppstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eppstein, D., Hirschberg, D.S. (2016). From Discrepancy to Majority. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49529-2_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49528-5

  • Online ISBN: 978-3-662-49529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics