The Grandmama de Bruijn Sequence for Binary Strings | SpringerLink
Skip to main content

The Grandmama de Bruijn Sequence for Binary Strings

  • Conference paper
  • First Online:
LATIN 2016: Theoretical Informatics (LATIN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9644))

Included in the following conference series:

  • 1101 Accesses

Abstract

A de Bruijn sequence is a binary string of length \(2^n\) which, when viewed cyclically, contains every binary string of length n exactly once as a substring. Knuth refers to the lexicographically least de Bruijn sequence for each n as the “granddaddy” and Fredricksen et al. showed that it can be constructed by concatenating the aperiodic prefixes of the binary necklaces of length n in lexicographic order. In this paper we prove that the granddaddy has a lexicographic partner. The “grandmama” sequence is constructed by instead concatenating the aperiodic prefixes in co-lexicographic order. We explain how our sequence differs from the previous sequence and why it had not previously been discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note: In the grandmama construction the necklaces are still the lexicographically least representatives for their rotational equivalence class, as clarified in Sect. 4.1.

References

  1. Au, Y.H.: Shortest sequences containing primitive words and powers. Discrete Math. 338(12), 2320–2331 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Compeau, P.E.C., Pevzner, P.A., Tesler, G.: How to apply de Bruijn graphs to genome assembly. Nat. Biotechnol. 29, 987–991 (2011)

    Article  Google Scholar 

  3. Cooper, J., Heitsch, C.: The discrepancy of the lex-least de Bruijn sequence. Discrete Math. 310, 1152–1159 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ford, L.R.: A cyclic arrangement of \(m\)-tuples. Report No. P-1071, RAND Corp., Santa Monica (1957)

    Google Scholar 

  5. Fredricksen, H., Kessler, I.J.: An algorithm for generating necklaces of beads in two colors. Discrete Math. 61, 181–188 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fredricksen, H., Maiorana, J.: Necklaces of beads in \(k\) colors and \(k\)-ary de Bruijn sequences. Discrete Math. 23, 207–210 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Graham, R.L., Knuth, D.E., Patashnik, O., Mathematics, C.: A Foundation for Computer Science, 2nd edn. Addison-Wesley Professional, Reading (1994)

    MATH  Google Scholar 

  8. Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, vol. 4A. Addison-Wesley Professional, Boston (2011)

    Google Scholar 

  9. Martin, M.H.: A problem in arrangements. Bull. Am. Math. Soc. 40, 859–864 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  10. Moreno, E.: On the theorem of Fredricksen and Maiorana about de Bruijn sequences. Adv. Appl. Math. 33, 413–415 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Moreno, E.: On the theorem of Fredricksen and Maiorana about de Bruijn sequences. Adv. Appl. Math. 33(2), 413–415 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Moreno, E., Perrin, D.: Corrigendum to “On the theorem of Fredricksen and Maiorana about de Bruijn sequences”. Adv. Appl. Math. 62, 184–187 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ruskey, F., Savage, C.D., Wang, T.M.Y.: Generating necklaces. J. Algorithms 13(3), 414–430 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ruskey, F., Sawada, J., Williams, A.: De Bruijn sequences for fixed-weight binary strings. SIAM J. Discrete Math. 26(2), 605–617 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sawada, J., Williams, A.: A Gray code for fixed-density necklaces and Lyndon words in constant amortized time. Theoret. Comput. Sci. 502, 46–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sawada, J., Williams, A., Wong, D.: The lexicographically smallest universal cycle for binary strings with minimum specified weight. J. Discrete Algorithms 28, 31–40 (2014). StringMasters 2012 & 2013 Special Issue

    Article  MathSciNet  MATH  Google Scholar 

  17. Sawada, J., Williams, A., Wong, D., Generalizing the classic greedy, necklace constructions for de Bruijn sequences, universal cycles. Electron. J. Comb., 23(1) (2016). Paper #1.24

    Google Scholar 

  18. Stein, S.K.: Mathematics: The Man-Made Universe, 3rd edn. W. H. Freeman and Company, San Francisco (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dragon, P.B., Hernandez, O.I., Williams, A. (2016). The Grandmama de Bruijn Sequence for Binary Strings. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49529-2_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49528-5

  • Online ISBN: 978-3-662-49529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics