On the Threshold of Intractability | SpringerLink
Skip to main content

On the Threshold of Intractability

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Abstract

We study the computational complexity of the graph modification problems and , adding and deleting as few edges as possible to transform the input into a threshold (or chain) graph. In this article, we show that both problems are -hard, resolving a conjecture by Natanzon, Shamir, and Sharan (2001). On the positive side, we show that these problems admit quadratic vertex kernels. Furthermore, we give a subexponential time parameterized algorithm solving in time, making it one of relatively few natural problems in this complexity class on general graphs. These results are of broader interest to the field of social network analysis, where recent work of Brandes (2014) posits that the minimum edit distance to a threshold graph gives a good measure of consistency for node centralities. Finally, we show that all our positive results extend to , as well as the completion and deletion variants of both problems.

The research leading to these results has received funding from the Research Council of Norway, Bergen Research Foundation under the project Beating Hardness by Preprocessing and the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 267959.

Blair D. Sullivan supported in part by the Gordon & Betty Moore Foundation as a DDD Investigator and the DARPA GRAPHS program under SPAWAR Grant N66001-14-1-4063. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of DARPA, SSC Pacific, or the Moore Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brandes, U.: Social network algorithmics. ISAAC, Invited talk (2014)

    Google Scholar 

  2. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes. A Survey. SIAM, Philadelphia (1999)

    Google Scholar 

  3. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification problems. Discrete Applied Mathematics 154(13), 1824–1844 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, Y., Marx, D.: Chordal editing is fixed-parameter tractable. In: STACS. LIPIcs, vol. 25, pp. 214–225 (2014)

    Google Scholar 

  6. Dehne, F., Langston, M., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing problem: Implementations and experiments. In: IPEC (2006)

    Google Scholar 

  7. Drange, P.G., Fomin, F.V., Pilipczuk, M., Villanger, Y.: Exploring subexponential parameterized complexity of completion problems. In: STACS (2014)

    Google Scholar 

  8. Drange, P.G., Pilipczuk, M.: A polynomial kernel for trivially perfect editing. In: ESA (to appear, 2015)

    Google Scholar 

  9. Drange, P.G., Dregi, M.S., Lokshtanov, D., Sullivan, B.D.: On the threshold of intractability. CoRR, abs/1505.00612 (2015)

    Google Scholar 

  10. Feder, T., Mannila, H., Terzi, E.: Approximating the minimum chain completion problem. Information Processing Letters 109(17), 980–985 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum fill-in. SIAM J. Comput. 42(6), 2197–2216 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  13. Guo, J.: Problem kernels for NP-complete edge deletion problems: Split and related graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 915–926. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Liu, Y., Wang, J., Guo, J.: An overview of kernelization algorithms for graph modification problems. Tsinghua Science and Technology 19(4), 346–357 (2014)

    Article  MathSciNet  Google Scholar 

  15. Liu, Y., Wang, J., Guo, J., Chen, J.: Complexity and parameterized algorithms for cograph editing. TCS 461, 45–54 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, Y., Wang, J., You, J., Chen, J., Cao, Y.: Edge deletion problems: Branching facilitated by modular decomposition. Theoretical Computer Science 573, 63–70 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mahadev, N., Peled, U.: Threshold graphs and related topics, vol. 56. Elsevier (1995)

    Google Scholar 

  18. Mancini, F.: Graph modification problems related to graph classes. PhD thesis, University of Bergen (2008)

    Google Scholar 

  19. Nastos, J., Gao, Y.: Familial groups in social networks. Social Networks 35(3), 439–450 (2013)

    Article  Google Scholar 

  20. Natanzon, A.: Complexity and approximation of some graph modification problems. PhD thesis, Tel Aviv University (1999)

    Google Scholar 

  21. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Applied Mathematics 113(1), 109–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schoch, D., Brandes, U.: Stars, neighborhood inclusion, and network centrality. In: SIAM Workshop on Network Science (2015)

    Google Scholar 

  23. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1), 173–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sharan, R.: Graph modification problems and their applications to genomic research. PhD thesis, Tel-Aviv University (2002)

    Google Scholar 

  25. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM Journal on Algebraic and Discrete Methods 2(1), 77–79 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pål Grønås Drange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Drange, P.G., Dregi, M.S., Lokshtanov, D., Sullivan, B.D. (2015). On the Threshold of Intractability. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics