Compressed Tree Canonization | SpringerLink
Skip to main content

Compressed Tree Canonization

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9135))

Included in the following conference series:

Abstract

Straight-line (linear) context-free tree (slt) grammars have been used to compactly represent ordered trees. Equivalence of slt grammars is decidable in polynomial time. Here we extend this result and show that isomorphism of unordered trees given as slt grammars is decidable in polynomial time. The result generalizes to isomorphism of unrooted trees and bisimulation equivalence. For non-linear slt grammars which can have double-exponential compression ratios, we prove that unordered isomorphism and bisimulation equivalence are \(\textsc {pspace}\)-hard and in \(\textsc {exptime}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  2. Balcázar, J., Gabarró, J., Sántha, M.: Deciding bisimilarity is P-complete. Formal Aspects of Computing 4, 638–648 (1992)

    Article  MATH  Google Scholar 

  3. Brenguier, R., Göller, S., Sankur, O.: A comparison of succinctly represented finite-state systems. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 147–161. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML document trees. Inf. Syst. 33(4–5), 456–474 (2008)

    Article  Google Scholar 

  5. Buss, S.R.: Alogtime algorithms for tree isomorphism, comparison, and canonization. Kurt Gödel Colloquium 97, 18–33 (1997)

    MathSciNet  Google Scholar 

  6. Charikar, M., Lehman, E., Lehman, A., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–2576 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Das, B., Scharpfenecker, P., Torán, J.: Succinct encodings of graph isomorphism. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 285–296. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. Galperin, H., Wigderson, A.: Succinct representations of graphs. Inf. Contr. 56, 183–198 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jenner, B., Köbler, J., McKenzie, P., Torán, J.: Completeness results for graph isomorphism. J. Comput. Syst. Sci. 66(3), 549–566 (2003)

    Article  MATH  Google Scholar 

  10. Lengauer, T., Wagner, K.W.: The correlation between the complexities of the nonhierarchical and hierarchical versions of graph problems. J. Comput. Syst. Sci. 44, 63–93 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lindell, S.: A logspace algorithm for tree canonization (extended abstract). In: Proc. STOC 1992, pp. 400–404. ACM (1992)

    Google Scholar 

  12. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complexity Cryptology 4(2), 241–299 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lohrey, M., Maneth, S., Peternek, F.: Compressed tree canonization (2015). arXiv.org http://arxiv.org/abs/1502.04625

  14. Lohrey, M., Maneth, S., Schmidt-Schauß, M.: Parameter reduction and automata evaluation for grammar-compressed trees. J. Comput. Syst. Sci. 78(5), 1651–1669 (2012)

    Article  MATH  Google Scholar 

  15. Lohrey, M., Mathissen, C.: Isomorphism of regular trees and words. Inf. Comput. 224, 71–105 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Lohrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lohrey, M., Maneth, S., Peternek, F. (2015). Compressed Tree Canonization. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47666-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47666-6_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47665-9

  • Online ISBN: 978-3-662-47666-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics