Abstract
Many optimization problems involve selecting the best subset of solution components. Besides, many other optimization problems can be modelled as a subset problem. This chapter focuses on developing a new framework in ant colony optimization (ACO) for optimization problems that require selection rather than ordering with an application to feature selection for regression problems as a representative for subset problems. This is addressed through three steps that are: explaining the main guidelines of developing an ant algorithm, demonstrating different solution representations for subset problems using ACO algorithms, and proposing a binary ant algorithm for feature selection for regression problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Montgomery, E.J.: Solution biases and pheromone representation selection in ant colony optimization. Ph.D Thesis, Bond University, Australia (2005)
Solnon, C., Bridge, D.: An ant colony optimization meta-heuristic for subset selection problems. In: Nedjah, N., Mourelle, L.M. (eds.) Systems Engineering Using Particle Swarm Optimization, pp. 3–25. Nova Science Publishers, New York (2006)
Mirzayans, T., Parimi, N., Pilarski, P., Backhouse, C., Wyard-Scott, L., Musilek, P.: A swarm-based system for object recognition. Neural Netw. World 15, 243–255 (2005)
Piatrik, T., Chandramouli, K., Izquierdo, E.: Image classification using biologically inspired systems. In: Proceedings of the 2nd International Mobile Multimedia Communications Conference MobiMedia’06, pp. 18–20 (2006)
Dorigo, M., Bonabeou, E., Theraulaz, G.: Inspiration for optimization from social insect behavior. Nature 406, 39–42 (2000)
Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Maniezzo, V., Milandri, M.: An ant-based framework for very strongly constrained problems. In: Dorigo, M., et al. (eds.) Ants Algorithms. LNCS, pp. 222–227. Springer, Berlin (2002)
Cordon, O., Herrera, F., Stutzle, T.: A review on the ant colony optimization metaheuristic: basis, models and new trends. Mathw. Soft Comput. 9(3), 141–175 (2002)
Galea, M.: Applying swarm intelligence to rule induction. M.Sc. Thesis, Division of Informatics, University of Edinburgh (2002)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)
Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, Boston (1998)
Klosgen, W., Zytkow, J.M.: Handbook of Data Mining and Knowledge Discovery. Oxford University Press, New York (2002)
Cios, K.J., Pedrycz, W., Wiswiniarski, R.: Data Mining Methods for Knowledge Discovery. Kluwer Academic Publishers, Boston (1998)
Weiss, S., Indurkhya, N.: Predictive Data Mining: A Practical Guide. Morgan Kaufmann Publishers, San Francisco (1998)
Rokach, L., Maimon, O.: Data Mining with Decision Trees. World Scientific Publishing, Singapore (2008)
Gong, S., McKenna, S., Psarrou, A.: Dynamic Vision: From Images to Face Recognition. Imperial College Press, London (1999)
Jahne, B., Haussecker, H., Geissler, P.: Handbook of Computer Vision and Applications. Academic Press, San Diego (1999)
Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Chapman & Hall Computing, New York (1993)
Bradski, G., Kaehler, A.: Learning OpenCV. O’Reilly, California (2008)
Jain, A., Flynn, P., Ross, A.: Handbook of Biometrics. Springer, New York (2008)
Whelan, P., Molloy, D.: Machine Vision Algorithms in Java: Techniques and Implementation. Springer, New York (2001)
Le, D., Satoh, S.: An efficient feature selection method for object detection. Pattern Recognition and Data Mining. LNCS, pp. 461–468. Springer, Berlin (2005)
Serre, T., Heisele, B., Mukherjee, S., Poggio, T.: Feature Selection for Face Detection. Massachusetts Institute of Technology, Cambridge (2000)
Lesk, A.: Introduction to Bioinformatics. Oxford University Press, New York (2002)
Silva, P., Hashimoto, R., Kim, S., Barrera, J.: Feature selection algorithms to find strong genes. Pattern Recognit. Lett. 26, 1444–1453 (2005)
Baxevanis, A., Quellette, B.F.F.: Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Wiley, New York (2001)
Riboni, D.: Feature selection for web page classification. In: Proceedings of the Workshop EURASIA-ICT 2002, pp. 473–477 (2002)
Sun, A., Lim, E., Ng, W.: Web classification using support vector machine. In: Proceedings of the WIDM’02, November, McLean, Virginia (2002)
Yang, Y., Pedersen, J.: A comparative study on feature selection in text categorization. In: Proceedings of the 14th International Conference on Machine Learning (ICML 1997), pp. 412–420 (1997)
Chen, J., Huang, H., Tian, S., Qua, Y.: Feature selection for text classification with naive bayes. Expert Syst. Appl. 36, 5432–5435 (2009)
Erta, F.: Feature selection and classification techniques for speaker recognition. J. Eng. Sci. 7(1), 47–54 (2001)
Ye, N.: The Handbook of Data Mining. Lawrence Erlbaum Associates, Mahwah (2003)
Abd-Alsabour, N., Randall, M., Lewis, A.: Investigating the effect of fixing the subset length using ant colony optimization algorithms for feature subset selection problems. In: Proceedings of the PDCAT, China (2012)
Han, J., Kamber, M.: Data Mining Concepts and Techniques, 1st edn. Morgan Kaufmann Publishers, San Francisco (2001)
Skillicorn, D.: Understanding Datasets: Datamining with Matrix Decomposition. Chapman & Hall/CRC, London (2007)
Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. Massachusetts Institute of Technology, Cambridge (2001)
Berry, M., Linoff, G.: Data Mining Techniques for Marketing, Sales, and Customer Relationship Management, 2nd edn. Wiley, New York (2004)
Leguizam’on, G., Michalewicz, Z.: A new version of ant system for subset problems. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of Congress on Evolutionary Computation (CEC99), Washington DC, July 6–9. IEEE Press, (1999)
Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization- artificial ants as a computational intelligence technique. IEEE Comput. Intell. Mag. 28–39 (2006)
Lee, K., Joo, J., Yang, J., Honavar, V.: Experimental comparison of feature subset selection using GA and ACO algorithm. In: Li, X., Zaiane, O.R., Li, Z. (eds.) ADMA 2006. LNAI, pp. 465–472. Springer, Berlin (2006)
Bello, R., Nowe, A., Caballero, Y., Gomez, Y., Vrancx, P.: A model based on ant colony system and rough set theory to feature selection. In: Proceedings of the GECCO’05. Washington (2005)
Jensen, R., Shen, Q.: Finding rough set reducts with ant colony optimization. In: Proceedings of the Workshop on Computational Intelligence, UK. 15–22 (2003)
Aghdam, M., Tanha, J., Naghsh-Nilchi, A., Basiri, M.: Combination of ant colony optimization and Bayesian classification for feature selection in a bioinformatics dataset. J. Comput. Sci. Syst. Biol. 2(3), 186–199 (2009)
Trafalis, T.B., Ince, H.: Support vector machine for regression and applications to financial forecasting. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference, vol. 6, pp. 348–353. IEEE Press (2000)
Durbha, S.S., King, R.L., Younan, N.H.: Support vector machines regression for retrieval of leaf area index from multi-angle imaging spectroradiometer. Remote Sens. Environ. 107, 348–361 (2007)
Lui, B.: Web Data Mining. Springer, Berlin (2010)
Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University, Taipei, Available at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf, (2003), viewed 25th March 2013
Wang, L., Fu, X.: Data Mining with Computational Intelligence. Springer, Berlin (2005)
Marsland, S.: Machine Learning: An Algorithmic Perspective, CRC Press-Taylor & Francis Group, (2009)
Miller, T.: Data and Text Mining- A Business Applications Approach. Pearson/ Prentice Hall, Upper Saddle River (2005)
Novat, A.: On the role of feature selection in machine learning. Ph.D Thesis, Hebrew University, Israel (2006)
http://www.cs.waikato.ac.nz/ml, viewed 25th March 2013
Amasyali, M., Ersoy, O.: A comparative review of regression ensembles on drug design datasets. Turkish J. Electr. Eng. Comput. Sci. 1–17 (2013)
R: A Language and Environment for Statistical Computing 2006 [http://www.R-project.org]. R Foundation for Statistical Computing, Vienna, Austria
http://www.cs.waikato.ac.nz/ml/weka, viewed 25th March 2011
Shen, Q., Jiang, J.H., Tao, J.C., Shen, G.L., Yu, R.Q.: Modified ant colony optimization algorithm for variable selection in QSAR modeling: QSAR studies of cyclooxygenase inhibitors. J. Chem. Inf. Model. 45, 1024–1029 (2005)
Izrailev, S., Agrafiotis, D.: Variable selection for QSAR by artificial ant colony systems. SAR QSAR Environ. Res. 13, 417–423 (2002)
Gunturi, S., Narayanan, R., Khandelwal, A.: In silico ADME modeling 2: computational models to predict human serum albumin binding affinity using ant colony systems. Biorgan. Med. Chem. 14, 4118–4129 (2006)
Shamsipur, M., Zare-Shahabadi, V., Hemmateenejad, B., Akhond, M.: Ant colony optimization: a powerful tool for wavelength selection. J. Chemom. 20, 146–157 (2006)
Palanisamy, S., Kanmani, S.: Artificial bee colony approach for optimizing feature selection. Int. J. Comput. Sci. Issues 9(3), 432–438 (2012)
Shamsipur, M., Zare-Shahabadi, V., Hemmateenejad, B., Akhond, M.: An efficient variable selection method based on the use of external memory in ant colony optimization: application to QSAR/QSPR. Anal. Chim. Acta 646, 39–46 (2009)
Vieira, S.M., Sousa, J.M.C., Runkler, T.A.: Two cooperative ant colonies for feature selection using fuzzy models. Expert Syst. Appl. 37, 2714–2723 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Abd-Alsabour, N. (2015). Binary Ant Colony Optimization for Subset Problems. In: Dehuri, S., Jagadev, A., Panda, M. (eds) Multi-objective Swarm Intelligence. Studies in Computational Intelligence, vol 592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46309-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-662-46309-3_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-46308-6
Online ISBN: 978-3-662-46309-3
eBook Packages: EngineeringEngineering (R0)