Compressive Sensing Multi-focus Image Fusion | SpringerLink
Skip to main content

Compressive Sensing Multi-focus Image Fusion

  • Conference paper
Pattern Recognition (CCPR 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 484))

Included in the following conference series:

  • 2427 Accesses

Abstract

Based on the compressive sensing theory (CS), various compressive imaging (CI) systems have been developed. Meanwhile, image fusion methods that directly perform on the measurements from multiple CI sensors are also investigated in literatures. In this paper, we presented a multi-focus image fusion method in compressive sensing domain. The main contribution is to introduce a novel clarity level of the random CI measurements without prior geometric information. The CI measurements are sparsely represented with DCT bases which are also projected into the CS domain. Then the sparse coefficients responding to DCT bases are used to guide the fusion of CI measurements of CI sensors. Finally, the fused images are obtained with CS recovery algorithm based on the block compressive sensing (BCS) theory. The simulation results validate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Li, H., Chai, Y., Yin, H., et al.: Multifocus image fusion and denoising scheme based on homogeneity similarity. Optics Communications 285(2), 91–100 (2012)

    Article  Google Scholar 

  2. Qu, G.H., Zhang, D.L., Yan, P.F.: Medical image fusion by wavelet transform modulus maxima. Optics Express 9(4), 184–190 (2001)

    Article  Google Scholar 

  3. Liu, Z., Tsukada, K., Hanasaki, K., et al.: Image fusion by using steerable pyramid. Pattern Recognition Letters 22(9), 929–939 (2001)

    Article  MATH  Google Scholar 

  4. Petrovic, V.S., Xydeas, C.S.: Gradient-based multiresolution image fusion. IEEE Transactions on Image Processing 13(2), 228–237 (2004)

    Article  Google Scholar 

  5. Pajares, G., Manuelde la Cruz, J.: A wavelet-based image fusion tutorial. Pattern Recognition 37(9), 1855–1872 (2004)

    Article  Google Scholar 

  6. Chu, H., Zhu, W.L.: Image fusion algorithms using discrete cosine transform. Optics and Precision Engineering 14(2), 266–273 (2006)

    Google Scholar 

  7. Zhang, Q., Guo, B.: Multifocus image fusion using the nonsubsampled contourlet transform. Signal Processing 89(7), 1334–1346 (2009)

    Article  MATH  Google Scholar 

  8. Baraniuk, R.: Compressive sensing. IEEE Signal Processing Magazine 24(4), 118–121 (2007)

    Article  Google Scholar 

  9. Wan, T., Canagarajah, N., Achim, A.: Compressive image fusion. In: Proceedings of 15th IEEE International Conference on Image Processing, pp. 1308–1311 (2008)

    Google Scholar 

  10. Han, J., Loffeld, O., Hartmann, K., et al.: Multi image fusion based on compressive sensing. In: Proceedings of the International Conference on Audio Language and Image Processing, pp. 1463–1469 (2010)

    Google Scholar 

  11. Luo, X., Zhang, J., Yang, J.Y., Dai, Q.H.: Image fusion in compressed sensing. In: Proceedings of 16th IEEE International Conference on Image Processing, Piscataway, NJ, pp. 2205–2208 (2009)

    Google Scholar 

  12. Luo, X., Yang, J., Dai, Q., et al.: Classification-based image-fusion framework for compressive imaging. Journal of Electronic Imaging 19(3), 033009-1–033009-14 (2010)

    Google Scholar 

  13. Yang, B., Li, S.T.: Pixel-level image fusion with simultaneous orthogonal matching pursuit. Information Fusion 13(1), 10–19 (2012)

    Article  Google Scholar 

  14. Haghighat, M.B.A., Aghagolzadeh, A., Seyedarabi, H.: Multi-focus image fusion for visual sensor networks in DCT domain. Computers & Electrical Engineering 37(5), 789–797 (2011)

    Article  MATH  Google Scholar 

  15. Gan, L.: Block compressed sensing of natural images. In: Proceedings of 15th IEEE International Conference on Digital Signal Processing, pp. 403–406 (2007)

    Google Scholar 

  16. Mun, S., Fowler, J.E.: Block compressed sensing of images using directional transforms. In: Proceedings of 16th IEEE International Conference on Image Processing, pp. 3021–3024 (2009)

    Google Scholar 

  17. Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine 25(2), 83–91 (2008)

    Article  MathSciNet  Google Scholar 

  18. Candès, E.J.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians, vol. 3, pp. 1433–1452 (2006)

    Google Scholar 

  19. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory 53(12), 4655–4666 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mun, S., Fowler, J.E.: Block compressed sensing of images using directional transforms. In: Proceedings of 16th IEEE International Conference on Image Processing, pp. 3021–3024 (2009)

    Google Scholar 

  21. Piella, G.: H Heijmans. A new quality metric for image fusion. In: Proceedings of the International Conference on Image Processing, vol. 2, pp. III-173–III-176 (2003)

    Google Scholar 

  22. Xydeas, C.S., Petrović Objective, V.: image fusion performance measure. Electronics Letters 36(4), 308–309 (2000)

    Article  Google Scholar 

  23. Kingsbury, N.: Complex wavelets for shift invariant analysis and filtering of signals. Applied and Computational Harmonic Analysis 10(3), 234–253 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, S.T., Kang, X.D., Hu, J.W.: Image fusion with guided filtering. IEEE Transactions on Image Processing 22(7), 2864–2875 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, F., Yang, B., Huang, Z. (2014). Compressive Sensing Multi-focus Image Fusion. In: Li, S., Liu, C., Wang, Y. (eds) Pattern Recognition. CCPR 2014. Communications in Computer and Information Science, vol 484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45643-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45643-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45642-2

  • Online ISBN: 978-3-662-45643-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics