What You Choose to See Is What You Get: An Experiment with Learnt Sensory Modulation in a Robotic Foraging Task | SpringerLink
Skip to main content

What You Choose to See Is What You Get: An Experiment with Learnt Sensory Modulation in a Robotic Foraging Task

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8602))

Included in the following conference series:

  • 1821 Accesses

Abstract

In evolutionary robotics, the mapping from raw sensory input to neural network input is typically decided by the experimenter or encoded in the genome. Either way, the mapping remains fixed throughout a robot’s lifetime. Inspired by biological sensory organs and the mammalian brain’s capacity for selective attention, we evaluate an alternative approach in which a robot has active, real-time control over the mapping from sensory input to neural network input. We augment the neural controllers with additional output neurons that control key sensory parameters and evolve solutions for a single-robot foraging task. The results show that the capacity to control the mapping from raw input to neural network input is exploited by evolution and leads to novel solutions with higher fitness compared to traditional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ampatzis, C., Tuci, E., Trianni, V., Christensen, A.L., Dorigo, M.: Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots. Artificial Life 15(4), 465–484 (2009)

    Article  Google Scholar 

  2. Auerbach, J.E., Bongard, J.C.: On the relationship between environmental and mechanical complexity in evolved robots. In: International Conference on Artificial Life (ALIFE), pp. 309–316. MIT Press, Cambridge (2012)

    Google Scholar 

  3. Balakrishnan, K., Honavar, V.: On sensor evolution in robotics. In: Annual Conference on Genetic Programming, pp. 455–460. MIT Press, Cambridge (1996)

    Google Scholar 

  4. Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive behavior. Adaptive Behavior 1, 91–122 (1992)

    Article  Google Scholar 

  5. Bellman, R.: Dynamic Programming, 1st edn. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  6. Dorigo, M., Floreano, D., Gambardella, L.M., Mondada, F., Nolfi, S., Baaboura, T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine 20(4), 60–71 (2013)

    Article  Google Scholar 

  7. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evolutionary Intelligence 1(1), 47–62 (2008)

    Article  Google Scholar 

  8. Floreano, D., Mondada, F.: Evolutionary neurocontrollers for autonomous mobile robots. Neural Networks 11(7–8), 1461–1478 (1998)

    Article  Google Scholar 

  9. Fries, P., Reynolds, J.H., Rorie, A.E., Desimone, R.: Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291(5508), 1560–1563 (2001)

    Article  Google Scholar 

  10. Groot, S.G.D., Gebhard, J.W.: Pupil size as determined by adapting luminance. Journal of the Optical Society of America 42(7), 492–495 (1952)

    Article  Google Scholar 

  11. Hess, E.H., Polt, J.M.: Pupil size as related to interest value of visual stimuli. Science 132(3423), 349–350 (1960)

    Article  Google Scholar 

  12. Kam-Chuen, J., Giles, C., Horne, B.: An analysis of noise in recurrent neural networks: convergence and generalization. IEEE Transactions on Neural Networks 7(6), 1424–1438 (1996)

    Article  Google Scholar 

  13. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974–978 (2000)

    Article  Google Scholar 

  14. Lund, H., Hallam, J., Lee, W.-P.: Evolving robot morphology. In: IEEE International Conference on Evolutionary Computation, pp. 197–202. IEEE Press, Piscataway (1997)

    Google Scholar 

  15. Mark, A., Mark, R., Polani, D., Uthmann, T.: A framework for sensor evolution in a population of braitenberg vehicle-like agents. In: International Conference on Artificial Life (ALIFE), pp. 428–432. MIT Press, Cambridge (1998)

    Google Scholar 

  16. Mautner, C., Belew, R.K.: Evolving robot morphology and control. Artificial Life and Robotics 4(3), 130–136 (2000)

    Article  Google Scholar 

  17. Meyer, J.-A., Husbands, P., Harvey, I.: Evolutionary robotics: A survey of applications and problems. In: 1st European Workshop on Evolutionary Robotics (EvoRobot), pp. 1–21. Springer, Berlin (1998)

    Google Scholar 

  18. Mondada, F., Guignard, A., Bonani, M., Bär, D., Lauria, M., Floreano, D.: Swarm-bot: From concept to implementation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1626–1631. IEEE Press, Piscataway (2003)

    Google Scholar 

  19. Nolfi, S., Floreano, D.: Learning and evolution. Autonomous Robots 7(1), 89–113 (1999)

    Article  Google Scholar 

  20. Nolfi, S., Floreano, D.: Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines. MIT Press, Cambridge (2000)

    Google Scholar 

  21. Parker, G., Nathan, P.: Concurrently evolving sensor morphology and control for a hexapod robot. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–6. IEEE Press, Piscataway (2010)

    Google Scholar 

  22. Silva, F., Urbano, P., Oliveira, S., Christensen, A.L.: odNEAT: An algorithm for distributed online, onboard evolution of robot behaviours. In: International Conference on Simulation and Synthesis of Living Systems (ALIFE), pp. 251–258. MIT Press, Cambridge (2012)

    Google Scholar 

  23. Soltoggio, A., Bullinaria, J.A., Mattiussi, C., Dürr, P., Floreano, D.: Evolutionary advantages of neuromodulated plasticity in dynamic, reward-based scenarios. In: International Conference on the Simulation and Synthesis of Living Systems (ALIFE), pp. 569–576. MIT Press, Cambridge (2008)

    Google Scholar 

  24. Watson, R., Ficici, S., Pollack, J.: Embodied evolution: Embodying an evolutionary algorithm in a population of robots. In: IEEE Congress on Evolutionary Computation (CEC), pp. 335–342. IEEE Press, Piscataway (1999)

    Google Scholar 

  25. Young, E.D., Rice, J.J., Tong, S.C.: Effects of pinna position on head-related transfer functions in the cat. Journal of the Acoustical Society of America 99(5), 3064–3076 (1996)

    Article  Google Scholar 

  26. Duarte, M., Sliva, F., Rodrigues, T., Oliveria, S.M., Christensen, A.L.: JBotEvolver: A Versatile Simulation Platform for Evolutionary Robotics. Proceedings of the International Conference on the Synthesis and Simulation of Living System (ALIFE), pp. 210–211. MIT Press, Cambridge, MA (2014)

    Google Scholar 

  27. Zhang, Y., Martinoli, A., Antonsson, E.K.: Evolutionary design of a collective sensory system. In: AAAI Spring Symposium on Computational Synthesis, pp. 283–290. MIT Press, Cambridge (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodrigues, T., Duarte, M., Oliveira, S., Christensen, A.L. (2014). What You Choose to See Is What You Get: An Experiment with Learnt Sensory Modulation in a Robotic Foraging Task. In: Esparcia-Alcázar, A., Mora, A. (eds) Applications of Evolutionary Computation. EvoApplications 2014. Lecture Notes in Computer Science(), vol 8602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45523-4_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45523-4_64

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45522-7

  • Online ISBN: 978-3-662-45523-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics