Abstract
This study proposes a multiple scatter plots based multi-dimensional transfer function for visualizing characteristic structures from ocean simulation data. In the proposed method, characteristic features are manually extracted in a couple of 2-dimensional scatter plots using visual effect and empirical judgment based on user’s existing knowledge. Extracted structures in each 2-variable space are assigned to other color dimensions such as Hue, Saturation and Brightness for the purposes of feature specification and classification. We applied the proposed method to high-resolution ocean data in two different regions. Ocean currents are intuitively extracted in multiple scatter plots and represented using multi-dimensional transfer functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall (1988)
Kaufman, L., Rousseuw, P.J.: Finding Groups in Data: an Introduction to Cluster Analysis. John Wley & Sons (1990)
Zhou, H., Yuan, X., Qu, H., Cui, W., Chen, B.: Visual Clustering in Parallel Coordinates. In: Proceedings of Eurographics/IEEE-VGTC Symposium on Visualization 2008, vol. 27(3), pp. 1047–1054 (2008)
Guo, H., Xiao, H., Yuan, X.: Multi-Dimensional Transfer Function Design based on Flexible Dimension Projection Embedded in Parallel Coordinates. In: Proceedings of 2011 IEEE Pacific Visualization Symposium (PacificVis), pp. 19–26 (2011)
Zhou, L., Hansen, C.: Transfer function design based on user selected samples for intuitive multivariate volume exploration. In: Proceedings of 2013 IEEE Pacific Visualization Symposium (PacificVis), pp. 73–80 (2013)
Steinhaus, H.: Sur la division des corps materiels en parties. Bulletin de l’Academie Polonaise des Sciences, Classe III IV(12), 801–804 (1956)
Karypis, G., Han, E., Chameleon, V.K.: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer 32(8), 68–75 (1999)
Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD 1996), pp. 226–231 (1996)
Matsuoka, D., Araki, F., Sasaki, H., Kida, S., Taguchi, B.: Visualization for Ocean General Circulation Model via Multi-dimensional Transfer Function and Multivariate Analysis. Transaction of the Japan Society for Simulation Technology 4(4), 168–175 (2012)
Hartigan, J.A.: Printer graphics for clustering. Journal of Statistical Computation and Simulation 4(3), 187–213 (1975)
Inselberg, A.: The plane with parallel coordinates. The Visual Computer 1(2), 69–91 (1985)
Becker, R., Cleveland, W.: Brushing scatterplots. Technometrics 29(2), 127–142 (1987)
Levoy, M.: Display of Surfaces from Volume Data. IEEE Computer Graphics and Applications 8(3), 29–37 (1988)
Kniss, J., Kindlmann, G., Hansen, C.: Multidimensional Transfer Functions for Interactive Volume Rendering. IEEE Transactions on Visualization and Computer Graphics 8(3), 270–285 (2002)
Kindlmann, G.: Multidimensional transfer functions for interactive volume rendering: Design, interface, interaction. SIGGRAPH Course Notes, No. 8, Vol. 3 (2002)
Kniss, J., Hansen, C., Grenier, M., Robinson, T.: Volume rendering multivariate data to visualize meteorological simulations: case study. In: Proceedings of Symposium on Data Visualization (VisSym 2002), pp. 189–194 (2002)
Doleisch, H., Gasser, M., Hauser, H.: Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data. In: Proceedings of the Symposium on Data Visualization 2003 (VisSym 2003), pp. 239–248 (2003)
Wong, P.C., Foote, H., Kao, D.L., Leung, R., Thomas, J.: Multivariate visualization with data fusion. Information Visualization 1(3-4), 182–193 (2002)
Urness, T., Interrante, V., Marusic, I., Longmire, E., Ganapathisubramani, B.: Effectively Visualizing Multi-Valued Flow Data using Color and Texture. In: Proceedings of the 14th IEEE Visualization 2003 (VIS 2003), pp. 115–121 (2003)
Cabral, B., Leedom, L.: Imaging Vector Fields Using Line Integral Convolution. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1993), pp. 263–270 (1993)
Rheingans, P.: Task-based Color Scale Design. In: Proceedings of Applied Image and Pattern Recognition (SPIE 1999), pp. 25–43 (1999)
Kaye, N.R., Hartley, A., Hemming, D.: Mapping the climate: guidance on appropriate techniques to map climate variables and their uncertainty. Geoscientific Model Development 5, 245–256 (2012)
Crossno, P., Angel, E., Munich, D.: Case Study: Visualizing Ocean Currents with Color and Dithering. In: Proceedings of IEEE Symposium on Parallel and large-Data Visualization and Graphics (PCG 2001), pp. 27–41 (2001)
Hengl, T.: Visualization of uncertainty using the HSI colour model: Computation with colours. In: Proceedings of the 7th International Conference on GeoComputation, pp. 8–17 (2003)
Masumoto, Y., Sasaki, H., Kagimoto, T., Komori, N., Ishida, A., Sasai, Y., Miyama, T., Motoi, T., Mitsudera, H., Takahashi, K., Sakuma, H., Yamagata, T.: A Fifty-year Eddy-Resolving Simulation of the World Ocean: Preliminary Outcomes of OFES (OGCM for the Earth Simulator). Journal of the Earth Simulator 1, 25–56 (2004)
Sasaki, H., Nonaka, M., Masumoto, Y., Sasai, Y., Uehara, H., Sakuma, H.: An Eddy-Resolving Hindcast Simulation of the Quasi-Global Ocean from 1950 to 2003 on the Earth Simulator. In: Hamilton, K., Ohfuchi, W. (eds.) High Resolution Numerical Modeling of the Atmosphere and Ocean, pp. 157–186. Springer, New York (2008)
Chen, H.: Compound brushing. In: Proceedings of IEEE Symposium on Information Visualization 2003, pp. 181–188 (2003)
Cottam, J., Wang, P., Lumsdaine, A.: Overplotting: Unified Solutions under Abstract Rendering. In: Proceedings of 2013 IEEE International Conference on Big Data 2013, pp. 9–16 (2013)
Mayorga, A., Gleicher, M.: Splatterplots: Overcoming Overdraw in Scatter Plots. IEEE Transactions on Visualization and Computer Graphics 19(9), 1526–1538 (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Matsuoka, D., Araki, F., Yamashita, Y. (2014). Multiple Scatter Plots Based Multi-dimensional Transfer Function for Visualizing Ocean Simulation Data. In: Tanaka, S., Hasegawa, K., Xu, R., Sakamoto, N., Turner, S.J. (eds) AsiaSim 2014. AsiaSim 2014. Communications in Computer and Information Science, vol 474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45289-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-662-45289-9_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-45288-2
Online ISBN: 978-3-662-45289-9
eBook Packages: Computer ScienceComputer Science (R0)