Temporal Logic Based Monitoring of Assisted Ventilation in Intensive Care Patients | SpringerLink
Skip to main content

Abstract

We introduce a novel approach to automatically detect ineffective breathing efforts in patients in intensive care subject to assisted ventilation. The method is based on synthesising from data temporal logic formulae which are able to discriminate between normal and ineffective breaths. The learning procedure consists in first constructing statistical models of normal and abnormal breath signals, and then in looking for an optimally discriminating formula. The space of formula structures, and the space of parameters of each formula, are searched with an evolutionary algorithm and with a Bayesian optimisation scheme, respectively. We present here our preliminary results and we discuss our future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric Identification of Temporal Properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 147–160. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of temporal properties for stochastic models. In: Proc. of HSB 2013, pp. 3–19 (2013)

    Google Scholar 

  4. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Learning temporal logical properties discriminating ECG models of cardiac arrhytmias. CoRR abs/1312.7523 (2013)

    Google Scholar 

  5. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 23–37. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E., Seyster, J.: Adaptive runtime verification. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 168–182. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

    Google Scholar 

  8. Blanch, L., Sales, B., Montanya, J., Lucangelo, U., Garcia-Esquirol, O., Villagra, A., Chacon, E., Estruga, A., Borelli, M., Burgueño, M., Oliva, J., Fernandez, R., Villar, J., Kacmarek, R., Murias, G.: Validation of the better care system to detect ineffective efforts during expiration in mechanically ventilated patients: A pilot study. Intensive Care Med. (in press)

    Google Scholar 

  9. Bortolussi, L., Sanguinetti, G.: Learning and Designing Stochastic Processes from Logical Constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 89–105. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Branson, R.: Patient-ventilator interaction: The last 40 years. Respir. Care 56(1), 15–24 (2011)

    Article  Google Scholar 

  11. Bujorianu, M.L., Lygeros, J.: General stochastic hybrid systems. In: IEEE Mediterranean Conference on Control and Automation MED, vol. 4, pp. 1872–1877 (2004)

    Google Scholar 

  12. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.) Trans. on Comput. Syst. Biol. VI. LNCS (LNBI), vol. 4220, pp. 68–94. Springer, Heidelberg (2006)

    Google Scholar 

  13. Chen, C., Lin, W., Hsu, C., Cheng, K., Lo, C.: Detecting ineffective triggering in the expiratory phase in mechanically ventilated patients based on airway flow and pressure deflection: Feasibility of using a computer algorithm. Crit. Care Med. 36(2), 455–461 (2008)

    Article  Google Scholar 

  14. Clarke, E., Donzé, A., Legay, A.: On simulation-based probabilistic model checking of mixed-analog circuits. Formal Methods in System Design 36(2), 97–113 (2010)

    Article  MATH  Google Scholar 

  15. Cuvelier, A., Achour, L., Rabarimanantsoa, H., Letellier, C., Muir, J., Fauroux, B.: A noninvasive method to identify ineffective triggering in patients with noninvasive pressure support ventilation. Respiration 80(3), 198–206 (2010)

    Article  Google Scholar 

  16. Davis, M.: Markov Models and Optimization. Chapman & Hall (1993)

    Google Scholar 

  17. Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.: On temporal logic and signal processing. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 92–106. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Georgoulas, A., Clark, A., Ocone, A., Gilmore, S., Sanguinetti, G.: A subsystems approach for parameter estimation of ode models of hybrid systems. In: Proc. of HSB 2012. EPTCS, vol. 92 (2012)

    Google Scholar 

  19. Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.: Learning and detecting emergent behavior in networks of cardiac myocytes. Commun. ACM 52(3), 97–105 (2009)

    Article  Google Scholar 

  20. Hoos, H.H., Stützle, T.: Stochastic local search: Foundations & applications. Elsevier (2004)

    Google Scholar 

  21. Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime Verification with Particle Filtering. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 149–166. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Kondili, E., Akoumianaki, E., Alexopoulou, C., Georgopoulos, D.: Identifying and relieving asynchrony during mechanical ventilation. Expert Rev. Respir. Med. 3(3), 231–243 (2009)

    Article  Google Scholar 

  23. Kondili, E., Prinianakis, G., Georgopoulos, D.: Patient-ventilator interaction. Br. J. Anaesth. 91(1), 106–119 (2003)

    Article  Google Scholar 

  24. Kong, Z., Jones, A., Ayala, A.M., Gol, E.A., Belta, C.: Temporal Logic Inference for Classification and Prediction from Data. In: Proc. of HSCC 2014 (2014)

    Google Scholar 

  25. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2, 255–299 (1990)

    Article  Google Scholar 

  26. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

    Google Scholar 

  27. Mellott, K., Grap, M., Munro, C., Sessler, C., Wetzel, P., Nilsestuen, J., Ketchum, J.: Patient ventilator asynchrony in critically ill adults: Frequency and types. Heart Lung 43(3), 231–243 (2014)

    Article  Google Scholar 

  28. Mulqueeny, Q., Ceriana, P., Carlucci, A., Fanfulla, F., Delmastro, M., Nava, S.: Automatic detection of ineffective triggering and double triggering during mechanical ventilation. Intensive Care Med. 33(11), 2014–2018 (2007)

    Article  Google Scholar 

  29. Mulqueeny, Q., Redmond, S., Tassaux, D., Vignaux, L., Jolliet, P., Ceriana, P., Nava, S., Schindhelm, K., Lovell, N.: Automated detection of asynchrony in patient-ventilator interaction. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 5324–5327 (2009)

    Google Scholar 

  30. Sassoon, C., Foster, G.: Patient-ventilator asynchrony. Curr. Opin. Crit. Care 7(1), 28–33 (2001)

    Article  Google Scholar 

  31. Sinderby, C., Liu, S., Colombo, D., Camarotta, G., Slutsky, A., Navalesi, P., Beck, J.: An automated and standardized neural index to quantify patient-ventilator interaction. Critical Care 17, 239 (2013)

    Article  Google Scholar 

  32. Sinderby, C., Navalesi, P., Beck, J., Skrobik, Y., Comtois, N., Friberg, S., Gottfried, S.B., Lindström, L.: Neural control of mechanical ventilation in respiratory failure. Nat. Med. 5(12), 1433–1436 (1999)

    Article  Google Scholar 

  33. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret bounds for gaussian process optimization in the bandit setting. IEEE Transactions on Information Theory 58(5), 3250–3265 (2012)

    Article  MathSciNet  Google Scholar 

  34. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A., Zadok, E.: Runtime Verification with State Estimation. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  35. Thille, A., Rodriguez, P., Cabello, B., Lellouche, F., Brochard, L.: Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 32(10), 1515–1522 (2006)

    Article  Google Scholar 

  36. Tobin, M.J., Jubran, A., Laghi, F.: Patient-ventilator interaction. Am. J. Respir. Crit. Care Med. 163(5), 1059–1063 (2001)

    Article  Google Scholar 

  37. Vignaux, L., Vargas, F., Roeseler, J., Tassaux, D., Thille, A., Kossowsky, M.P., Brochard, L., Jolliet, P.: Patient-ventilator asynchrony during non-invasive ventilation for acute respiratory failure: A multicenter study. Intensive Care Med. 35(5), 840–846 (2009)

    Article  Google Scholar 

  38. de Wit, M., Miller, K., Green, D., Ostman, H., Gennings, C., Epstein, S.: Ineffective triggering predicts increased duration of mechanical ventilation. Crit. Care Med. 37(10), 2740–2745 (2009)

    Article  Google Scholar 

  39. Wrigge, H., Reske, A.: Patient-ventilator asynchrony: Adapt the ventilator, not the patient! Crit. Care Med. 41(9), 2240–2241 (2013)

    Article  Google Scholar 

  40. Xiaoqing, J., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining Requirements from Closed-loop Control Models. In: Proc. of HSCC 2013, pp. 43–52. ACM (2013)

    Google Scholar 

  41. Yang, H., Hoxha, B., Fainekos, G.: Querying Parametric Temporal Logic Properties on Embedded Systems. In: Nielsen, B., Weise, C. (eds.) ICTSS 2012. LNCS, vol. 7641, pp. 136–151. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  42. Younes, H.L.S., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical probabilistic model checking: An empirical study. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 46–60. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L. (2014). Temporal Logic Based Monitoring of Assisted Ventilation in Intensive Care Patients. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Specialized Techniques and Applications. ISoLA 2014. Lecture Notes in Computer Science, vol 8803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45231-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45231-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45230-1

  • Online ISBN: 978-3-662-45231-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics