Using Statistical Model Checking for Measuring Systems | SpringerLink
Skip to main content

Abstract

State spaces represent the way a system evolves through its different possible executions. Automatic verification techniques are used to check whether the system satisfies certain properties, expressed using automata or logic-based formalisms. This provides a Boolean indication of the system’s fitness. It is sometimes desirable to obtain other indications, measuring e.g., duration, energy or probability. Certain measurements are inherently harder than others. This can be explained by appealing to the difference in complexity of checking CTL and LTL properties. While the former can be done in time linear in the size of the property, the latter is PSPACE in the size of the property; hence practical algorithms take exponential time. While the CTL-type of properties measure specifications that are based on adjacency of states (up to a fixpoint calculation), LTL properties have the flavor of expecting some multiple complicated requirements from each execution sequence. In order to quickly measure LTL-style properties from a structure, we use a form of statistical model checking; we exploit the fact that LTL-style properties on a path behave like CTL-style properties on a structure. We then use CTL-based measuring on paths, and generalize the measurement results to the full structure using optimal Monte Carlo estimation techniques. To experimentally validate our framework, we present measurements for a flocking model of bird-like agents.

The 2nd author is supported by ISF grant “Efficient Synthesis Method of Control for Concurrent Systems”, award 126/12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties for quantitative languages. Logical Methods in Computer Science 6(3) (2010)

    Google Scholar 

  2. Conley, J.F.: Evolving boids: Using a genetic algorithm to develop boid behaviors. In: Proceedings of the 8th International Conference on GeoComputation (GeoComputation 2005) (2005), http://www.geocomputation.org/2005/

  3. Cucker, F., Dong, J.G.: A general collision-avoiding flocking framework. IEEE Trans. on Automatic Control 56(5), 1124–1129 (2011)

    Article  MathSciNet  Google Scholar 

  4. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. on Automatic Control 52(5), 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  5. Dagum, P., Karp, R., Luby, M., Ross, S.: An optimal algorithm for Monte Carlo estimation. SIAM Journal on Computing 29(5), 1484–1496 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel programs using fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 169–181. Springer, Heidelberg (1980)

    Chapter  Google Scholar 

  7. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.: Collecting statistics over runtime executions. Formal Methods in System Design 27(3), 253–274 (2005)

    Article  MATH  Google Scholar 

  8. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: PSTV, pp. 3–18 (1995)

    Google Scholar 

  9. Grosu, R., Smolka, S.: Quantitative model checking. In: Proc. of the 1st International Symposium on Leveraging Applications of Formal Methods (ISOLA 2004), Paphos, Cyprus, pp. 165–174 (November 2004)

    Google Scholar 

  10. Grosu, R., Peled, D., Ramakrishnan, C.R., Smolka, S.A., Stoller, S.D., Yang, J.: Compositional branching-time measurements. In: Bensalem, S., Lakhneck, Y., Legay, A. (eds.) From Programs to Systems. LNCS, vol. 8415, pp. 118–128. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  11. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Karp, R., Luby, M., Madras, N.: Monte-Carlo approximation algorithms for enumeration problems. Journal of Algorithms 10, 429–448 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Latvala, T., Biere, A., Heljanko, K., Junttila, T.A.: Simple bounded LTL model checking. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 186–200. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. on Automatic Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  16. Penczek, W., Wozna, B., Zbrzezny, A.: Bounded model checking for the universal fragment of ctl. Fundam. Inf. 51(1), 135–156 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)

    Google Scholar 

  18. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1987), pp. 25–34. ACM (1987)

    Google Scholar 

  20. Stonedahl, F., Wilensky, U.: Finding forms of flocking: Evolutionary search in ABM parameter-spaces. In: Bosse, T., Geller, A., Jonker, C.M. (eds.) MABS 2010. LNCS, vol. 6532, pp. 61–75. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Physical Review Letters 75, 1226–1229 (1995)

    Article  Google Scholar 

  22. Younes, H.K.L.: Verification and Planning for Stochastic Processes. Ph.D. thesis, Carnegie Mellon (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grosu, R., Peled, D., Ramakrishnan, C.R., Smolka, S.A., Stoller, S.D., Yang, J. (2014). Using Statistical Model Checking for Measuring Systems. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Specialized Techniques and Applications. ISoLA 2014. Lecture Notes in Computer Science, vol 8803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45231-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45231-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45230-1

  • Online ISBN: 978-3-662-45231-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics