Secure Communication Using Four-Wing Hyper-Chaotic Attractor | SpringerLink
Skip to main content

Secure Communication Using Four-Wing Hyper-Chaotic Attractor

  • Conference paper
Security in Computing and Communications (SSCC 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 467))

Included in the following conference series:

  • 1116 Accesses

Abstract

It is shown how a four-wing hyper-chaotic attractor can be used for secure communication using parameter convergence. Using some variables for complete replacement and some for feedback control and unknown parameter adaptation, two hyper-chaotic attractors are synchronized in a time less than the time scale of their chaotic oscillations. This synchronization is used for and secure communication of digital messages. The coding parameter of the transmitting system changes so rapidly that an intruder cannot infer any information about the attractors corresponding to the two coding parameters. The scheme presented in this paper is more secure as compared to other similar schemes. This is demonstrated by comparison with an existing scheme based on parameter adaptation and Lyapunov stability theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–825 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Pecora, L.M., Carroll, T.L.: Driving systems with chaotic signals. Phys. Rev. A. 44, 2374–2384 (1991)

    Article  Google Scholar 

  3. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71, 65–68 (1993)

    Article  Google Scholar 

  4. Kocarev, L., Parlitz, U.: General approach for chaotic synchronization with applications to communication. Phys. Rev. Lett. 74, 5028–5031 (1995)

    Article  Google Scholar 

  5. Kennedy, M.P., Kolumban, G.: Digital communication using chaos. Signal Processing 80, 1307–1320 (2000)

    Article  MATH  Google Scholar 

  6. Dedieu, H., Kennedy, M.P., Hasler, M.: Chaos Shift Keying: Modulation and Demodulation of chaotic carrier using self-synchronizing Chua’s circuit. IEEE Transaction on Circuit and System-II Analog and Digital Signal Processing 40, 634–642 (1993)

    Google Scholar 

  7. Pecora, L.M., Carroll, T.L., Johnson, G.A., Mar, D.J., Heagy, J.F.: Fundamentals of synchronization in chaotic systems, concepts and applications. Chaos 7, 520–543 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dwivedi, A., Mittal, A.K., Dwivedi, S.: Adaptive synchronization of diffusionless Lorenz systems and secure communication of digital signals by parameter modulation. IET Communications 6, 2016–2026 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Feki, M.: An adaptive chaos synchronization scheme applied to secure communication. Chaos, Solitons and Fractals 18, 141–148 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Adloo, H., Roopaei, M.: Review article on adaptive synchronization of chaotic systems with unknown parameters. Nonlinear Dyn. 65, 141–159 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, S., Lu, J.: Synchronization of uncertain unified chaotic system via adaptive control. Chaos, Solitons and Fractals 14, 643–647 (2002)

    Article  MATH  Google Scholar 

  12. Dong, E., Chen, Z., Yuan, Z., Chen, Z.: A New Four-wing Hyper-chaotic Attractor and Its Circuit Implementation. In: International Workshop on Chaos-Fractal Theory and its Applications (2010)

    Google Scholar 

  13. Perez, G., Cerdeira, H.A.: Extracting messages masked by chaos. Phys. Rev. Lett. 74, 1970–1973 (1995)

    Article  Google Scholar 

  14. Jovic, B., Unsworth, C.P., Berber, S.M.: De-noising Initial Condition Modulation Wideband Chaotic Communication Systems with Linear & Wavelet Filters. In: Proceedings of the First IEEE International Conference on Wireless Broadband and Ultra Wideband Communications (Aus Wireless 2006), Sydney, Australia, pp. 1–6 (2006)

    Google Scholar 

  15. Grzesiak, M.: Wavelet filtering of chaotic data. Nonlinear Processes in Geophysics 7, 111–116 (2000)

    Article  Google Scholar 

  16. Broomhead, D., Huke, J., Muldoon, M.: Linear Filters and Nonlinear Systems. Journal of the Royal Statistical Society 54, 373–382 (1992)

    MATH  MathSciNet  Google Scholar 

  17. Roy, M., Kumar, V., Kulkarni, B., Sanderson, J., Rhodes, M., Stappen, M.: Simple denoising algorithm using wavelet transform. AIChE Journal 45, 2461–2466 (1999)

    Article  Google Scholar 

  18. Constantine, W., Reinhall, P.: Wavelet-based in-band denoising technique for chaotic sequences. International Journal of Bifurcation and Chaos 11, 483–495 (2000)

    Article  Google Scholar 

  19. Boccalleti, S., Guiaquinta, A., Arecchi, F.: Adaptive recognition and filtering of noise using wavelets. Physical Review E 55, 5393–5397 (1997)

    Article  Google Scholar 

  20. Carroll, T.L.: Approximating chaotic time series through unstable periodic orbits. Physical Review E 59, 1615–1621 (1999)

    Article  Google Scholar 

  21. Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Breaking parameter modulated chaotic secure communication system. Chaos, Solitons and Fractals 21, 783–787 (2004)

    Article  MATH  Google Scholar 

  22. Yin, P., Min, L., Li, P.: A text encryption scheme based generalized discrete chaos synchronization for image communication. In: International Conference on Environmental Engineering and Technology. Advances in Biomedical Engineering, vol. 8, pp. 310–316 (2012)

    Google Scholar 

  23. Yau, H.-T., Pu, Y.-C., Li, S.-C.: Application of chaotic synchronization system to secure communication. Information Technology and Control 41, 274–282 (2012)

    Article  Google Scholar 

  24. Huang, C.K., Liao, C.W., Hsu, S.L., Jeng, Y.C.: Implementation of gray image encryption with pixel shuffling and gray-level encryption by single chaotic system. Telecommunication Syst., 1–9 (2011)

    Google Scholar 

  25. Sengodan, V., Balamurugan, A.: Efficient signal encryption using chaos based system. International Journal of Electronics Engineering 2, 335–338 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dwivedi, A., Mittal, A.K., Dwivedi, S. (2014). Secure Communication Using Four-Wing Hyper-Chaotic Attractor. In: Mauri, J.L., Thampi, S.M., Rawat, D.B., Jin, D. (eds) Security in Computing and Communications. SSCC 2014. Communications in Computer and Information Science, vol 467. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44966-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44966-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44965-3

  • Online ISBN: 978-3-662-44966-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics