Learning Through Hypothesis Refinement Using Answer Set Programming | SpringerLink
Skip to main content

Learning Through Hypothesis Refinement Using Answer Set Programming

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8812))

Included in the following conference series:

Abstract

Recent work has shown how a meta-level approach to inductive logic programming, which uses a semantic-preserving transformation of a learning task into an abductive reasoning problem, can address a large class of multi-predicate, nonmonotonic learning in a sound and complete manner. An Answer Set Programming (ASP) implementation, called ASPAL, has been proposed that uses ASP fixed point computation to solve a learning task, thus delegating the search to the ASP solver. Although this meta-level approach has been shown to be very general and flexible, the scalability of its ASP implementation is constrained by the grounding of the meta-theory. In this paper we build upon these results and propose a new meta-level learning approach that overcomes the scalability problem of ASPAL by breaking the learning process up into small manageable steps and using theory revision over the meta-level representation of the hypothesis space to improve the hypothesis computed at each step. We empirically evaluate the computational gain with respect to ASPAL using two different answer set solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 4576
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 5720
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that empty goals are equivalent to \(\top \).

  2. 2.

    The full details of the learning tasks can be found at https://dl.dropboxusercontent.com/u/15091371/ILP2013_examples.pdf.

References

  1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  2. Bratko, I.: Refining complete hypotheses in ILP. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 44–55. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Corapi, D.: Nonmonotonic inductive logic programming as abductive search. Ph.D. thesis, Imperial College London (2011)

    Google Scholar 

  4. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming as abductive search. In: Hermenegildo, M., Schaub, T. (eds.) Technical Communications of the 26th International Conference on Logic Programming (2010)

    Google Scholar 

  5. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming in answer set programming. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011. LNCS, vol. 7207, pp. 91–97. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Corapi, D., Russo, A., Vos, M.D., Padget, J.A., Satoh, K.: Normative design using inductive learning. TPLP 11(4–5), 783–799 (2011)

    MATH  Google Scholar 

  7. Dimopoulos, Y., Kakas, A.: Learning non-monotonic logic programs: learning exceptions. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 122–137. Springer, Heidelberg (1995)

    Google Scholar 

  8. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: the Potsdam answer set solving collection. AI Commun. 24(2), 105–124 (2011)

    MathSciNet  Google Scholar 

  9. Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions with inductive logic programming. CoRR abs/1402.5988 (2014)

    Google Scholar 

  10. Kimber, T.: Learning definite and normal logic programs by induction on failure. Ph.D. thesis, Imperial College London (2012)

    Google Scholar 

  11. Kimber, T., Broda, K., Russo, A.: Induction on failure: learning connected horn theories. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 169–181. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic 7(3), 499–562 (2006)

    Article  MathSciNet  Google Scholar 

  13. Lloyd, J.: Foundations of logic programming. Springer, New York (1984)

    Book  MATH  Google Scholar 

  14. Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods. J. Logic Program. 19–20(20), 629–679 (1994)

    Article  Google Scholar 

  15. Muggleton, S.H., Santos, J.C.A., Tamaddoni-Nezhad, A.: TopLog: ILP using a logic program declarative bias. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 687–692. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Muggleton, S.H., Lin, D.: Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited. In: IJCAI (2013)

    Google Scholar 

  17. Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Logic 7(3), 329–340 (2008)

    Article  Google Scholar 

  18. Sakama, C.: Nonmonotonic inductive logic programming. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 62–80. Springer, Heidelberg (2001)

    Google Scholar 

  19. Sakama, C.: Induction from answer sets in nonmonotonic logic programs. ACM Trans. Comput. Logic 6(2), 203–231 (2005)

    Article  MathSciNet  Google Scholar 

  20. Sakama, C., Inoue, K.: Brave induction: a logical framework for learning from incomplete information. Mach. Learn. 67(1), 3–35 (2009)

    Article  Google Scholar 

  21. Stahl, I.: Predicate invention in inductive logic programming. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming, pp. 34–47. IOS Press, Amsterdam (1996)

    Google Scholar 

  22. Wrobel, S.: First order theory refinement. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming, pp. 14–33. IOS Press, Amsterdam (1996)

    Google Scholar 

Download references

Acknowledgment

This work is partially funded by the 7th Framework EU-FET project 600792 ALLOW Ensembles and the EPSRC project P44745.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duangtida Athakravi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Athakravi, D., Corapi, D., Broda, K., Russo, A. (2014). Learning Through Hypothesis Refinement Using Answer Set Programming. In: Zaverucha, G., Santos Costa, V., Paes, A. (eds) Inductive Logic Programming. ILP 2013. Lecture Notes in Computer Science(), vol 8812. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44923-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44923-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44922-6

  • Online ISBN: 978-3-662-44923-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics