Abstract
We review the Distributional Clauses Particle Filter (DCPF), a statistical relational framework for inference in hybrid domains over time such as vision and robotics. Applications in these domains are challenging for statistical relational learning as they require dealing with continuous distributions and dynamics in real-time. The framework addresses these issues, it supports the online learning of parameters and it was tested in several tracking scenarios with good results.
Chapter PDF
Similar content being viewed by others
Keywords
References
De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Inductive Logic Programming, Theory and Applications. Springer, Heidelberg (2008)
Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., De Raedt, L.: The magic of logical inference in probabilistic programming. Theory and Practice of Logic Programming (2011)
Moldovan, B., De Raedt, L.: Learning relational affordance models for two-arm robots. In: International Conference on Intelligent Robots and Systems (2014)
Moldovan, B., De Raedt, L.: Occluded object search by relational affordances. In: IEEE International Conference on Robotics and Automation, ICRA (2014)
Nitti, D., De Laet, T., De Raedt, L.: A particle filter for hybrid relational domains. In: International Conference on Intelligent Robots and Systems, IROS (2013)
Nitti, D., De Laet, T., De Raedt, L.: Relational object tracking and learning. In: International Conference on Robotics and Automation, ICRA (2014)
Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nitti, D., De Laet, T., De Raedt, L. (2014). Distributional Clauses Particle Filter. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2014. Lecture Notes in Computer Science(), vol 8726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44845-8_45
Download citation
DOI: https://doi.org/10.1007/978-3-662-44845-8_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44844-1
Online ISBN: 978-3-662-44845-8
eBook Packages: Computer ScienceComputer Science (R0)