Abstract
Given a set of time series, we aim at finding representatives which best comprehend the recurring temporal patterns contained in the data. We demonstrate BestTime, a Matlab application that uses recurrence quantification analysis to find time series representatives.
Chapter PDF
Similar content being viewed by others
References
Batista, G., Wang, X., Keogh, E.: A Complexity-Invariant Distance Measure for Time Series. In: SDM, pp. 699–710 (2011)
Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. PVLDB 1(2), 1542–1552 (2008)
Liao, T.: Clustering of time series data - a survey. Journal on Pattern Recognition 38(11), 1857–1874 (2005)
Marwan, N., Romano, M., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Physics Reports 438(5-6), 237–329 (2007)
Meesrikamolkul, W., Niennattrakul, V., Ratanamahatana, C.A.: Shape-Based Clustering for Time Series Data. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part I. LNCS, vol. 7301, pp. 530–541. Springer, Heidelberg (2012)
Spiegel, S., Albayrak, S.: An Order-invariant Time Series Distance Measure. In: KDIR, pp. 264–268 (2012)
Spiegel, S., Schultz, D., Schacht, M., Albayrak, S.: Supplementary Online Material - BestTime App, Test Data, Video Demonstration, Technical Report, http://www.dai-lab.de/~spiegel/besttime.html
Spiegel, S., Jain, B.J., Albayrak, S.: A Recurrence Plot-based Distance Measure. Springer Proceedings in Mathematics (to appear, 2014)
Webber, C., Marwan, N., Facchini, A., Giuliani, A.: Simpler methods do it better: Success of Recurrence Quantification Analysis as a general purpose data analysis tool. Physics Letters A 373(41), 3753–3756 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Spiegel, S., Schultz, D., Albayrak, S. (2014). BestTime: Finding Representatives in Time Series Datasets. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2014. Lecture Notes in Computer Science(), vol 8726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44845-8_39
Download citation
DOI: https://doi.org/10.1007/978-3-662-44845-8_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44844-1
Online ISBN: 978-3-662-44845-8
eBook Packages: Computer ScienceComputer Science (R0)