Abstract
Air pollution is a serious problem of modern urban centers. The objective of this research is to investigate the problem by using Machine Learning techniques. It comprises of two parts. Firstly, it applies a well established Unsupervised Machine Learning approach (UML) namely Self Organizing Maps (SOM) for the clustering of Attica air quality big data vectors. This is done by using the concentrations of air pollutants (specific for each area) for a period of 13-years (2000-2012). Secondly, it employs a Supervised Machine Learning methodology (SML) by using multi layer Artificial Neural Networks (ML-ANN) to classify the same cases. Actually, the ANN models are used to evaluate the SOM reliability. This is done, because there is no actual and well accepted clustering of the related data to compare with the outcome of the SOM and this adds innovation merit to this paper.
Chapter PDF
Similar content being viewed by others
References
Alkasassbeh, M., Sheta, A.F., Faris, H., Turabieh, H.: Prediction of PM10 and TSP Air Pollution Parameters Using Artificial Neural Network Autoregressive, External Input Models: A Case Study in Salt, Jordan. Middle-East Journal of Scientific Research 14(7), 999–1009 (2013) ISSN 1990-9233
Fawcelt, T.: An Introduction to ROC Analysis. Pattern Recognition Letters 27(8), 861–874 (2006), doi:10.1016/j.patrec.2005.10.010.
Glorennec, P.Y.: Forecasting Ozone Peaks Using Self-organizing Maps and Fuzzy Logic. In: Air Pollution Modelling and Simulation, pp. 544–550. Springer (2002)
Iliadis, L., Spartalis, S., Paschalidou, A., Kassomenos, P.: Artificial Neural Network Modelling of the surface Ozone concentration. International Journal of Computational and Applied Mathematics 2(2), 125–138 (2007)
Jordan, M.I., Bishop, C.M.: “Neural Networks”. In: Tucker, A.B. (ed.) Computer Science Handbook, 2nd edn. Section VII: Intelligent Systems. Chapman & Hall/CRC Press LLC, Boca Raton (2004) ISBN 1-58488-360-X
Karatzas, K., Voukantsis, D.: Studying and predicting quality of life atmospheric parameters with the aid of computational intelligence methods” iEMSs 2008: International Congress on Environmental Modelling and Software Integrating Sciences and Information Technology for Environmental Assessment and Decision Making 4th Biennial Meeting of iEMSs. In: Sànchez-Marrè, M., Béjar, J., Comas, J., Rizzoli, A., Guariso, G. (eds.) International Environmental Modelling and Software Society, iEMSs (2008)
Kirt, T., Vainik, E., Võhandu, L.: A method for comparing self-organizing maps: case studies of banking and linguistic data. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) Proceedings of Eleventh East-European Conference on Advances in Databases and Information Systems, pp. 107–115. Technical University of Varna, Varna (2007)
Li, S.T., Cho, S.W.: Multi-Resolution Spatio-temporal Data Mining for the Study of Air Pollutant Regionalization. In: Proceedings of the 33rd Hawaii Conf. on System Sciences (2000)
Neme, A., Hernández, L.: Visualizing Patterns in the Air Quality in Mexico City with Self-Organizing Maps. In: Laaksonen, J., Honkela, T. (eds.) WSOM 2011. LNCS, vol. 6731, pp. 318–327. Springer, Heidelberg (2011)
Paschalidou, A., Iliadis, L., Kassomenos, P., Bezirtzoglou, C.: Neural Modeling of the Tropospheric Ozone concentrations in an Urban Site. In: 10th International Conference Engineering Applications of Neural Networks, pp. 436–445 (2007)
Skön, J.P., Johansson, M., Raatikainen, M., Haverinen-Shaughnessy, U., Pasanen, P., Leiviskä, K., Kolehmainen, M.: Analysing Events and Anomalies in Indoor Air Quality Using Self-Organizing Maps. International Journal of Artificial Intelligence 9(A12) (2012)
Yin, H.: Learning Nonlinear Principal Manifolds by Self-Organising Maps. In: Gorban, A.N., Kégl, B., Wunsch, D.C., Zinovyev, A. (eds.) Computing in Systems Described by Equations. Lecture Notes in Computer Science and Engineering (LNCSE), vol. 58, Springer, Berlin (1977)
Greek ministry of Environment, http://www.ypeka.gr/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 IFIP International Federation for Information Processing
About this paper
Cite this paper
Bougoudis, I., Iliadis, L., Spartalis, S. (2014). Comparison of Self Organizing Maps Clustering with Supervised Classification for Air Pollution Data Sets. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds) Artificial Intelligence Applications and Innovations. AIAI 2014. IFIP Advances in Information and Communication Technology, vol 436. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44654-6_42
Download citation
DOI: https://doi.org/10.1007/978-3-662-44654-6_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44653-9
Online ISBN: 978-3-662-44654-6
eBook Packages: Computer ScienceComputer Science (R0)