Decidable Topologies for Communicating Automata with FIFO and Bag Channels | SpringerLink
Skip to main content

Decidable Topologies for Communicating Automata with FIFO and Bag Channels

  • Conference paper
CONCUR 2014 – Concurrency Theory (CONCUR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8704))

Included in the following conference series:

  • 848 Accesses

Abstract

We study the reachability problem for networks of finite-state automata communicating over unbounded perfect channels. We consider communication topologies comprising both ordinary FIFO channels and bag channels, i.e., channels where messages can be freely reordered. It is well-known that when only FIFO channels are considered, the reachability problem is decidable if, and only if, there is no undirected cycle in the topology. On the other side, when only bag channels are allowed, the reachability problem is decidable for any topology by a simple reduction to Petri nets. In this paper, we study the more complex case where the topology contains both FIFO and bag channels, and we provide a complete characterisation of the decidable topologies in this generalised setting.

This work was partially supported by the ANR project Vacsim (ANR-11-INSE-004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P.A., Atig, M.F., Cederberg, J.: Analysis of message passing programs using SMT-solvers. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 272–286. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Abdulla, P., Jonsson, B.: Verifying programs with unreliable channels. Inf. Comput. 127(2), 91–101 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with infinite state spaces using QDDs. Form. Methods Sys. Des. 14, 237–255 (1999)

    Article  Google Scholar 

  4. Bouajjani, A., Emmi, M.: Bounded phase analysis of message-passing programs. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 451–465. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf. Comput. 202(2), 166–190 (2005)

    Article  MATH  Google Scholar 

  7. Cécé, G., Finkel, A., Purushothaman Iyer, S.: Unreliable channels are easier to verify than perfect channels. Inf. Comput. 124(1), 20–31 (1996)

    Article  MATH  Google Scholar 

  8. Chambart, P., Schnoebelen, P.: Mixing lossy and perfect fifo channels. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Ganty, P., Majumdar, R.: Algorithmic verification of asynchronous programs. ACM Trans. Program. Lang. Syst. 34(1), 1–6 (2012)

    Article  Google Scholar 

  10. Haase, C., Schmitz, S., Schnoebelen, P.: The power of priority channel systems. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 319–333. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Heußner, A., Leroux, J., Muscholl, A., Sutre, G.: Reachability analysis of communicating pushdown systems. LMCS 8(3), 1–20 (2012)

    Google Scholar 

  12. Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. SIGPLAN Not. 42(1), 339–350 (2007)

    Article  Google Scholar 

  13. Kosaraju, S.R.: Decidability of reachability in vector addition systems. In: Proc. STOC 1982, pp. 267–281 (1982) (preliminary version)

    Google Scholar 

  14. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 299–314. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Leroux, J.: Vector addition system reachability problem: A short self-contained proof. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 41–64. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Mayr, E.: An algorithm for the general petri net reachability problem. In: Proc. STOC 1981, pp. 238–246 (1981)

    Google Scholar 

  17. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)

    Google Scholar 

  18. Pachl, J.K.: Reachability problems for communicating finite state machines. Research Report CS-82-12, University of Waterloo (May 1982)

    Google Scholar 

  19. Sen, K., Viswanathan, M.: Model checking multithreaded programs with asynchronous atomic methods. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 300–314. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clemente, L., Herbreteau, F., Sutre, G. (2014). Decidable Topologies for Communicating Automata with FIFO and Bag Channels. In: Baldan, P., Gorla, D. (eds) CONCUR 2014 – Concurrency Theory. CONCUR 2014. Lecture Notes in Computer Science, vol 8704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44584-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44584-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44583-9

  • Online ISBN: 978-3-662-44584-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics