Abstract
We study the complexity of decision problems encoded in bit-vector logic. This class of problems includes word-level model checking, i.e., the reachability problem for transition systems encoded by bit-vector formulas. Our main result is a generic theorem which determines the complexity of a bit-vector encoded problem from the complexity of the problem in explicit encoding. In particular, NL-completeness of graph reachability directly implies PSpace-completeness and ExpSpace-completeness for word-level model checking with unary and binary arity encoding, respectively. In general, problems complete for a complexity class C are shown to be complete for an exponentially harder complexity class than C when represented by bit-vector formulas with unary encoded scalars, and further complete for a double exponentially harder complexity class than C with binary encoded scalars. We also show that multi-logarithmic succinct encodings of the scalars result in completeness for multi-exponentially harder complexity classes. Technically, our results are based on concepts from descriptive complexity theory and related techniques for OBDDs and Boolean encodings.
Supported by the NFN grant S11403-N23 (RiSE) of the Austrian Science Fund (FWF) and by the grant ICT10-050 (PROSEED) of the Vienna Science and Technology Fund (WWTF).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balcázar, J.L., Lozano, A., Torán, J.: The complexity of algorithmic problems on succinct instances. Computer Science, 351–377 (1992)
Borchert, B., Lozano, A.: Succinct circuit representations and leaf language classes are basically the same concept. Inf. Process. Lett. 59(4), 211–215 (1996)
Das, B., Scharpfenecker, P., Torán, J.: Succinct encodings of graph isomorphism. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 285–296. Springer, Heidelberg (2014)
Feigenbaum, J., Kannan, S., Vardi, M.Y., Viswanathan, M.: Complexity of problems on graphs represented as OBDDs. Chicago Journal of Theoretical Computer Science 5(5) (1999)
Galperin, H., Wigderson, A.: Succinct representations of graphs. Information and Control 56(3), 183–198 (1983)
Gottlob, G., Leone, N., Veith, H.: Succinctness as a source of complexity in logical formalisms. Annals of Pure and Applied Logic 97(1), 231–260 (1999)
Lozano, A., Balcázar, J.L.: The complexity of graph problems for succinctly represented graphs. In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 277–286. Springer, Heidelberg (1990)
Papadimitriou, C.H., Yannakakis, M.: A note on succinct representations of graphs. Information and Control 71(3), 181–185 (1986)
Veith, H.: Succinct representation, leaf languages, and projection reductions. In: IEEE Conference on Computational Complexity, pp. 118–126 (1996)
Veith, H.: Languages represented by boolean formulas. Inf. Process. Lett. 63(5), 251–256 (1997)
Veith, H.: Succinct representation, leaf languages, and projection reductions. Information and Computation 142(2), 207–236 (1998)
Wagner, K.W.: The complexity of combinatorial problems with succinct input representation. Acta Informatica 23(3), 325–356 (1986)
Fröhlich, A., Kovásznai, G., Biere, A.: More on the complexity of quantifier-free fixed-size bit-vector logics with binary encoding. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 378–390. Springer, Heidelberg (2013)
Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for bit-vector arithmetic. In: Proc. DAC 1998, pp. 522–527 (1998)
Bjørner, N.S., Pichora, M.C.: Deciding fixed and non-fixed size bit-vectors. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 376–392. Springer, Heidelberg (1998)
Bruttomesso, R., Sharygina, N.: A scalable decision procedure for fixed-width bit-vectors. In: ICCAD, pp. 13–20. IEEE (2009)
Cyrluk, D., Möller, O., Rueß, H.: An efficient decision procedure for a theory of fixed-sized bitvectors with composition and extraction. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 60–71. Springer, Heidelberg (1997)
Franzén, A.: Efficient Solving of the Satisfiability Modulo Bit-Vectors Problem and Some Extensions to SMT. PhD thesis, University of Trento (2010)
Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0. In: Proc. SMT 2010 (2010)
Brummayer, R., Biere, A., Lonsing, F.: BTOR: bit-precise modelling of word-level problems for model checking. In: Proc. 1st International Workshop on Bit-Precise Reasoning, pp. 33–38. ACM, New York (2008)
Kovásznai, G., Fröhlich, A., Biere, A.: On the complexity of fixed-size bit-vector logics with binary encoded bit-width. In: Proc. SMT 2012, pp. 44–55 (2012)
Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a logic of counter arithmetic with lambda expressions and uninterpreted functions. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78–92. Springer, Heidelberg (2002)
Manolios, P., Srinivasan, S.K., Vroon, D.: BAT: The bit-level analysis tool. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 303–306. Springer, Heidelberg (2007)
Bradley, A.R.: Understanding IC3. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 1–14. Springer, Heidelberg (2012)
Brummayer, R., Biere, A.: Boolector: An efficient SMT solver for bit-vectors and arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 174–177. Springer, Heidelberg (2009)
de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
Bjesse, P.: A practical approach to word level model checking of industrial netlists. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 446–458. Springer, Heidelberg (2008)
Bjorner, N., McMillan, K., Rybalchenko, A.: Program verification as satisfiability modulo theories. In: Proc. SMT 2012, pp. 3–11 (2013)
Veith, H.: How to encode a logical structure by an OBDD. In: Proc. 13th Annual IEEE Conference on Computational Complexity, pp. 122–131. IEEE (1998)
Immerman, N.: Languages that capture complexity classes. SIAM Journal on Computing 16(4), 760–778 (1987)
Schwentick, T.: Padding and the expressive power of existential second-order logics. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 461–477. Springer, Heidelberg (1998)
Immerman, N.: Descriptive complexity. Springer (1999)
Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View. Texts in Theoretical Computer Science. Springer (2008)
Stewart, I.A.: Complete problems involving boolean labelled structures and projection transactions. Journal of Logic and Computation 1(6), 861–882 (1991)
Stewart, I.A.: On completeness for NP via projection translations. In: Martini, S., Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, pp. 353–366. Springer, Heidelberg (1993)
Stewart, I.A.: Using the Hamiltonian path operator to capture NP. Journal of Computer and System Sciences 45(1), 127–151 (1992)
Stewart, I.A.: On completeness for NP via projection translations. Mathematical Systems Theory 27(2), 125–157 (1994)
Stewart, I.A.: Complete problems for monotone NP. Theoretical Computer Science 145(1), 147–157 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kovásznai, G., Veith, H., Fröhlich, A., Biere, A. (2014). On the Complexity of Symbolic Verification and Decision Problems in Bit-Vector Logic. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44465-8_41
Download citation
DOI: https://doi.org/10.1007/978-3-662-44465-8_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44464-1
Online ISBN: 978-3-662-44465-8
eBook Packages: Computer ScienceComputer Science (R0)