Generalized Block Iterative Methods | SpringerLink
Skip to main content

Generalized Block Iterative Methods

  • Conference paper
Visualization and Mathematics III

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1741 Accesses

Summary

In this article we present a new mathematical approach for solving the radiosity system. We introduce iterative methods using the so-called generalized block partitioning of a matrix. They are designed to improve the convergence speed of the progressive radiosity method by relaxing several components of the residual vector at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Bekaert. Hierarchical and Stochastic Algorithms for Radiosity. PhD thesis, Katholieke Universiteit Leuven, December 1999.

    MATH  Google Scholar 

  2. A. Berman and R. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia, 1994.

    Book  MATH  Google Scholar 

  3. C. Brezinski and M. Redivo Zaglia. Hybrid procedures for solving systems of linear equations. Numerische Mathematik, 67: 1–19, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Ciarlet. Introduction à l’analyse numérique matricielle et à l’optimisation. Masson, 1990.

    Google Scholar 

  5. M. Cohen, S. Chen, J. Wallace, and D. Greenberg. A progressive refinement approach to fast radiosity image generation. ACM Computer Graphics 22, 4 (SIGGRAPH’88 Proceedings), pages 75–84, 1988.

    Google Scholar 

  6. G. Drettakis and F. Sillion. Interactive update of global illumination using a line-space hierarchy. In Proceedings of SIGGRAPH 97, pages 57–64, August 1997.

    Chapter  Google Scholar 

  7. M. Feda and W. Purgathofer. Accelerating radiosity by overshooting. Proceedings of the Third Eurographics Workshop on Rendering, pages 21–32, May 1992.

    Google Scholar 

  8. S. Gortler, M. Cohen, and P. Slusallek. Radiosity and relaxation methods. IEEE Computer Graphics and Animation, 14 (6): 48–58, November 1994.

    Article  Google Scholar 

  9. G. Greiner, W. Heidrich, and P. Slusallek. Blockwise refinement–a new method for solving the radiosity problem. In Fourth Eurographics Workshop on Rendering, pages 233–245, June 1993.

    Google Scholar 

  10. P. Hanrahan, D. Salzman, and L. Aupperle. A rapid hierarchical radiosity algorithm. In Computer Graphics (SIGGRAPH’91 Proceedings), July 1991.

    Google Scholar 

  11. J. Hasenfratz, C. Damez, F. Sillion, and G. Drettakis. A practical analysis of clustering stragies for hierarchical radiosity. In R. Brunet and R. Scopigno, editors, EUROGRAPHICS ’ 99, volume 18. Blackwell Publishers, 1999.

    Google Scholar 

  12. M. Leblond. Propriétés des matrices de la radiosité. Application à la résolution du système de la radiosité. PhD thesis, Université du Littoral Côte d’Opale, June 2001.

    Google Scholar 

  13. M. Leblond, C. Renaud, and F. Rousselle. Hybridization techniques for fast radiosity solvers. In IEEE Computer Society, editor, Computer Graphics International 2000, pages 269–278, Geneva, Switzerland, June 2000.

    Google Scholar 

  14. H. Mint. Nonnegative Matrices. Wiley Interscience, 1987.

    Google Scholar 

  15. L. Neumann, W. Purgathofer, R. Tobler, A. Neumann, P. Elias, M. Feda, and X. Pueyo. The stochastic ray method for radiosity. In P. Hanrahan and W. Purgathofer, editors, Rendering Techniques’ 95. Springer WienNewYork, 1995.

    Google Scholar 

  16. F. Rousselle. Amélioration des méthodes de résolution utilisées en radiosité. PhD thesis, Université du Littoral Côte d’Opale, December 2000.

    Google Scholar 

  17. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, 1996.

    Google Scholar 

  18. M. Shao and N. Badler. Analysis and acceleration of progressive refinement radiosity method. In Fourth Eurographics Workshop on Rendering, pages 247258, Paris, France, June 1993.

    Google Scholar 

  19. P. Shirley. Radiosity via ray tracing. In J. Arvo, editor, Graphics Gems II, pages 306–310. Academic Press, San Diego, 1991.

    Google Scholar 

  20. F. Sillion. A unified hierarchical algorithm for global illumination with scattering volumes and object clusters. IEEE Transactions on Visualization and Computer Graphics, 1 (3), September 1995.

    Google Scholar 

  21. R. Southwell. Stress-calculation in frameworks by the method of “systematic relaxation of constraints”. Proc. Roy. Soc. London, A151 56–95; A153 41–76, 1935.

    Article  Google Scholar 

  22. M. Stamminger, H. Schirmacher, P. Slusallek, and H. Seidel. Getting rid of links in hierarchical radiosity. In N. Ferreira and M. Göbel, editors, EUROGRAPHICS ’ 98, volume 17. Blackwell Publishers, 1998.

    Google Scholar 

  23. W. Xu and D. Fussel. Constructing solvers for radiosity equation systems. Proceedings of the Fifth Eurographics Workshop on Rendering, pages 207–217, June 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leblond, M., Rousselle, F., Renaud, C. (2003). Generalized Block Iterative Methods. In: Hege, HC., Polthier, K. (eds) Visualization and Mathematics III. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05105-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05105-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05682-6

  • Online ISBN: 978-3-662-05105-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics