Summary
In this article we present a new mathematical approach for solving the radiosity system. We introduce iterative methods using the so-called generalized block partitioning of a matrix. They are designed to improve the convergence speed of the progressive radiosity method by relaxing several components of the residual vector at the same time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P. Bekaert. Hierarchical and Stochastic Algorithms for Radiosity. PhD thesis, Katholieke Universiteit Leuven, December 1999.
A. Berman and R. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia, 1994.
C. Brezinski and M. Redivo Zaglia. Hybrid procedures for solving systems of linear equations. Numerische Mathematik, 67: 1–19, 1994.
P. Ciarlet. Introduction à l’analyse numérique matricielle et à l’optimisation. Masson, 1990.
M. Cohen, S. Chen, J. Wallace, and D. Greenberg. A progressive refinement approach to fast radiosity image generation. ACM Computer Graphics 22, 4 (SIGGRAPH’88 Proceedings), pages 75–84, 1988.
G. Drettakis and F. Sillion. Interactive update of global illumination using a line-space hierarchy. In Proceedings of SIGGRAPH 97, pages 57–64, August 1997.
M. Feda and W. Purgathofer. Accelerating radiosity by overshooting. Proceedings of the Third Eurographics Workshop on Rendering, pages 21–32, May 1992.
S. Gortler, M. Cohen, and P. Slusallek. Radiosity and relaxation methods. IEEE Computer Graphics and Animation, 14 (6): 48–58, November 1994.
G. Greiner, W. Heidrich, and P. Slusallek. Blockwise refinement–a new method for solving the radiosity problem. In Fourth Eurographics Workshop on Rendering, pages 233–245, June 1993.
P. Hanrahan, D. Salzman, and L. Aupperle. A rapid hierarchical radiosity algorithm. In Computer Graphics (SIGGRAPH’91 Proceedings), July 1991.
J. Hasenfratz, C. Damez, F. Sillion, and G. Drettakis. A practical analysis of clustering stragies for hierarchical radiosity. In R. Brunet and R. Scopigno, editors, EUROGRAPHICS ’ 99, volume 18. Blackwell Publishers, 1999.
M. Leblond. Propriétés des matrices de la radiosité. Application à la résolution du système de la radiosité. PhD thesis, Université du Littoral Côte d’Opale, June 2001.
M. Leblond, C. Renaud, and F. Rousselle. Hybridization techniques for fast radiosity solvers. In IEEE Computer Society, editor, Computer Graphics International 2000, pages 269–278, Geneva, Switzerland, June 2000.
H. Mint. Nonnegative Matrices. Wiley Interscience, 1987.
L. Neumann, W. Purgathofer, R. Tobler, A. Neumann, P. Elias, M. Feda, and X. Pueyo. The stochastic ray method for radiosity. In P. Hanrahan and W. Purgathofer, editors, Rendering Techniques’ 95. Springer WienNewYork, 1995.
F. Rousselle. Amélioration des méthodes de résolution utilisées en radiosité. PhD thesis, Université du Littoral Côte d’Opale, December 2000.
Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, 1996.
M. Shao and N. Badler. Analysis and acceleration of progressive refinement radiosity method. In Fourth Eurographics Workshop on Rendering, pages 247258, Paris, France, June 1993.
P. Shirley. Radiosity via ray tracing. In J. Arvo, editor, Graphics Gems II, pages 306–310. Academic Press, San Diego, 1991.
F. Sillion. A unified hierarchical algorithm for global illumination with scattering volumes and object clusters. IEEE Transactions on Visualization and Computer Graphics, 1 (3), September 1995.
R. Southwell. Stress-calculation in frameworks by the method of “systematic relaxation of constraints”. Proc. Roy. Soc. London, A151 56–95; A153 41–76, 1935.
M. Stamminger, H. Schirmacher, P. Slusallek, and H. Seidel. Getting rid of links in hierarchical radiosity. In N. Ferreira and M. Göbel, editors, EUROGRAPHICS ’ 98, volume 17. Blackwell Publishers, 1998.
W. Xu and D. Fussel. Constructing solvers for radiosity equation systems. Proceedings of the Fifth Eurographics Workshop on Rendering, pages 207–217, June 1994.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leblond, M., Rousselle, F., Renaud, C. (2003). Generalized Block Iterative Methods. In: Hege, HC., Polthier, K. (eds) Visualization and Mathematics III. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05105-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-662-05105-4_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05682-6
Online ISBN: 978-3-662-05105-4
eBook Packages: Springer Book Archive