Exploring Epipolar Consistency Conditions | SpringerLink
Skip to main content

Exploring Epipolar Consistency Conditions

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2024 (BVM 2024)

Abstract

Intravital X-ray microscopy (XRM) in preclinical mouse models is of vital importance for the identification of microscopic structural pathological changes in the bone which are characteristic of osteoporosis. The complexity of this method stems from the requirement for high-quality 3D reconstructions of the murine bones. However, respiratory motion and muscle relaxation lead to inconsistencies in the projection data which result in artifacts in uncompensated reconstructions. Motion compensation using epipolar consistency conditions (ECC) has previously shown good performance in clinical CT settings. Here, we explore whether such algorithms are suitable for correcting motion-corrupted XRM data. Different rigid motion patterns are simulated and the quality of the motion-compensated reconstructions is assessed. The method is able to restore microscopic features for out-of-plane motion, but artifacts remain for more realistic motion patterns including all six degrees of freedom of rigid motion. Therefore, ECC is valuable for the initial alignment of the projection data followed by further fine-tuning of motion parameters using a reconstruction-based method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10690
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 13363
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jacobsen C. X-ray Microscopy. (Advances in Microscopy and Microanalysis). Cambridge University Press, 2019.

    Google Scholar 

  2. Mader KS, Schneider P, Müller R, Stampanoni M. A quantitative framework for the 3D characterization of the osteocyte lacunar system. Bone. 2013;57(1):142–54.

    Google Scholar 

  3. Wagner F, Thies M, Karolczak M, Pechmann S, Huang Y, Gu M et al. Monte Carlo dose simulation for In-vivo X-ray nanoscopy. Proc BVM. 2022:107–12.

    Google Scholar 

  4. Mill L, Bier B, Syben C, Kling L, Klingberg A, Christiansen S et al. Towards In-Vivo X-Ray nanoscopy: the effect of motion on image quality. Proc BVM. 2018:115–20.

    Google Scholar 

  5. Aichert A, Berger M, Wang J, Maass N, Doerfler A, Hornegger J et al. Epipolar consistency in transmission imaging. IEEE Trans Med Imaging. 2015;34(11):2205–19.

    Google Scholar 

  6. Frysch R, Rose G. Rigid motion compensation in interventional C-arm CT using consistency measure on projection data. Proc MICCAI. 2015:298–306.

    Google Scholar 

  7. Sisniega A, Stayman JW, Yorkston J, Siewerdsen JH, Zbijewski W. Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion. Phys Med Biol. 2017;62(9):3712–34.

    Google Scholar 

  8. Thies M, Wagner F, Maul N, Folle L, Meier M, Rohleder M et al. Gradient-based geometry learning for fan-beam CT reconstruction. Phys Med Biol. 2023;68(20):205004.

    Google Scholar 

  9. Preuhs A, Ravikumar N, Manhart M, Stimpel B, Hoppe E, SybenCet al. Maximum likelihood estimation of head motion using epipolar consistency. Proc BVM. 2019:134–9.

    Google Scholar 

  10. Hoffmann M, Würfl T, Maaß N, Dennerlein F, Aichert A, Maier AK. Empirical scatter correction using the epipolar consistency condition. Proc CT-meeting. 2018:193–7.

    Google Scholar 

  11. Preuhs A, Berger M, Xia Y, Maier A, Hornegger J, Fahrig R. Over-exposure correction in CT using optimization-based multiple cylinder fitting. Proc BVM. 2015:35–40.

    Google Scholar 

  12. Gao F, Han L. Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput Optim Appl. 2012;51(1):259–77.

    Google Scholar 

  13. Thies M, Wagner F, Huang Y, Gu M, Kling L, Pechmann S et al. Calibration by differentiation–Self-supervised calibration for X-ray microscopy using a differentiable conebeam reconstruction operator. J Microsc. 2022;287(2):81–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mareike Thies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thies, M. et al. (2024). Exploring Epipolar Consistency Conditions. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_60

Download citation

Publish with us

Policies and ethics