Abstract
Intravital X-ray microscopy (XRM) in preclinical mouse models is of vital importance for the identification of microscopic structural pathological changes in the bone which are characteristic of osteoporosis. The complexity of this method stems from the requirement for high-quality 3D reconstructions of the murine bones. However, respiratory motion and muscle relaxation lead to inconsistencies in the projection data which result in artifacts in uncompensated reconstructions. Motion compensation using epipolar consistency conditions (ECC) has previously shown good performance in clinical CT settings. Here, we explore whether such algorithms are suitable for correcting motion-corrupted XRM data. Different rigid motion patterns are simulated and the quality of the motion-compensated reconstructions is assessed. The method is able to restore microscopic features for out-of-plane motion, but artifacts remain for more realistic motion patterns including all six degrees of freedom of rigid motion. Therefore, ECC is valuable for the initial alignment of the projection data followed by further fine-tuning of motion parameters using a reconstruction-based method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jacobsen C. X-ray Microscopy. (Advances in Microscopy and Microanalysis). Cambridge University Press, 2019.
Mader KS, Schneider P, Müller R, Stampanoni M. A quantitative framework for the 3D characterization of the osteocyte lacunar system. Bone. 2013;57(1):142–54.
Wagner F, Thies M, Karolczak M, Pechmann S, Huang Y, Gu M et al. Monte Carlo dose simulation for In-vivo X-ray nanoscopy. Proc BVM. 2022:107–12.
Mill L, Bier B, Syben C, Kling L, Klingberg A, Christiansen S et al. Towards In-Vivo X-Ray nanoscopy: the effect of motion on image quality. Proc BVM. 2018:115–20.
Aichert A, Berger M, Wang J, Maass N, Doerfler A, Hornegger J et al. Epipolar consistency in transmission imaging. IEEE Trans Med Imaging. 2015;34(11):2205–19.
Frysch R, Rose G. Rigid motion compensation in interventional C-arm CT using consistency measure on projection data. Proc MICCAI. 2015:298–306.
Sisniega A, Stayman JW, Yorkston J, Siewerdsen JH, Zbijewski W. Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion. Phys Med Biol. 2017;62(9):3712–34.
Thies M, Wagner F, Maul N, Folle L, Meier M, Rohleder M et al. Gradient-based geometry learning for fan-beam CT reconstruction. Phys Med Biol. 2023;68(20):205004.
Preuhs A, Ravikumar N, Manhart M, Stimpel B, Hoppe E, SybenCet al. Maximum likelihood estimation of head motion using epipolar consistency. Proc BVM. 2019:134–9.
Hoffmann M, Würfl T, Maaß N, Dennerlein F, Aichert A, Maier AK. Empirical scatter correction using the epipolar consistency condition. Proc CT-meeting. 2018:193–7.
Preuhs A, Berger M, Xia Y, Maier A, Hornegger J, Fahrig R. Over-exposure correction in CT using optimization-based multiple cylinder fitting. Proc BVM. 2015:35–40.
Gao F, Han L. Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput Optim Appl. 2012;51(1):259–77.
Thies M, Wagner F, Huang Y, Gu M, Kling L, Pechmann S et al. Calibration by differentiation–Self-supervised calibration for X-ray microscopy using a differentiable conebeam reconstruction operator. J Microsc. 2022;287(2):81–92.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Thies, M. et al. (2024). Exploring Epipolar Consistency Conditions. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_60
Download citation
DOI: https://doi.org/10.1007/978-3-658-44037-4_60
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-44036-7
Online ISBN: 978-3-658-44037-4
eBook Packages: Computer Science and Engineering (German Language)