Abstract
X-ray coronary angiography is the gold standard imaging modality for the assessment of coronary artery disease (CAD). The SYNTAX score is a recommended instrument for therapy decision-making and predicts the postprocedural risk associated with the two revascularization strategies: percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG). The score requires expert assessment and manual measurements of coronary angiograms for stenosis characterization. In this work we propose a deep learning workflow for automated stenosis detection to facilitate the calculation of the SYNTAX score. We use a region-based convolutional neural network for object detection, fine-tuned on a public dataset consisting of angiography frames with annotated stenotic regions. The model is evaluated on angiographic video sequences of complex CAD patients from the German Heart Center of the Charité University Hospital (DHZC), Berlin. We provide a customized graphical tool for cardiac experts that allows correction and segment annotation of the detected stenotic regions. The model reached a precision of 78.39% in the frame-wise object detection task on the clinical dataset. For the task of predicting the presence of coronary stenoses at the patient level, the model achieved a sensitivity of 49.55% for stenoses of all degrees and 59.18% for stenoses of relevant degrees (>75%). The results suggest that our stenosis detection tool can facilitate visual assessment of CAD in angiography data and encourage to investigate further development towards fully automated calculation of the SYNTAX score.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wang H, Naghavi M, Allen C, Barber RM. Global, regional, and national life expectancy, allcause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459–544.
Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;(25):3481– 8.
Holmes DR, Rich JB, Zoghbi WA, Mack MJ. The heart team of cardiovascular care. J Am Coll Cardiol. 2013;61(9):903–7.
Rigatelli G, Gianese F, Zuin M. Modern atlas of invasive coronary angiography views: a practical approach for fellows and young interventionalists. Int J Cardiovasc Imaging. 2021.
Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U et al. ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87–165.
Sianos G, Morel MA, Kappetein AP, Morice MC. The SYNTAX score: an angiographic tool grading the complexity of coronary artery disease. Eurointervention. 2005.
Zhu X, Cheng Z, Wang S, Chen X, Lu G. Coronary angiography image segmentation based on PSPNet. Comput Methods Programs Biomed. 2021;200:105897.
Iyer K, Najarian CP, Fattah AA, Arthurs CJ, Soroushmehr SMR, Subban V et al. AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography. Sci Rep. 2021;11(1):18066.
Zhao C, Bober R, Tang H, Tang J, Dong M, Zhang C et al. Semantic segmentation to extract coronary arteries in invasive coronary angiograms. J Adv Comput Math. 2022;9:76–85.
Zhao C, Vij A, Malhotra S, Tang J, Tang H, Pienta D et al. Automatic extraction and stenosis evaluation of coronary arteries in invasive coronary angiograms. Comput Biol Med. 2021;136:104667.
Zhou Y, Guo H, Song J, Chen Y, Wang J. Review of vessel segmentation and stenosis classification in X-ray coronary angiography. Processing WCSP. 2021:1–5.
Danilov VV, Klyshnikov KY, Gerget OM, Kutikhin AG, Ganyukov VI, Frangi AF et al. Real-time coronary artery stenosis detection based on modern neural networks. Sci Rep. 2021;11(1):7582.
Ling H, Chen B, Guan R, Xiao Y, Yan H, Chen Q et al. Deep learning model for coronary angiography. J Cardiovasc Transl Res. 2023;16(4):896–904.
Pang K, Ai D, Fang H, Fan J, Song H, Yang J. Stenosis-DetNet: Sequence consistencybased stenosis detection for X-ray coronary angiography. Computerized Medical Imaging and Graphics. 2021;89:101900.
Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst. 2015;28.
Lin TY, Maire M, Belongie S, Bourdev L, Garshick R, Hays J et al. Microsoft COCO: common objects in context. Proc ECCV. 2014:740–55.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Popp, A. et al. (2024). Segment-wise Evaluation in X-ray Angiography Stenosis Detection. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_36
Download citation
DOI: https://doi.org/10.1007/978-3-658-44037-4_36
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-44036-7
Online ISBN: 978-3-658-44037-4
eBook Packages: Computer Science and Engineering (German Language)