Segment-wise Evaluation in X-ray Angiography Stenosis Detection | SpringerLink
Skip to main content

Segment-wise Evaluation in X-ray Angiography Stenosis Detection

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2024 (BVM 2024)

Abstract

X-ray coronary angiography is the gold standard imaging modality for the assessment of coronary artery disease (CAD). The SYNTAX score is a recommended instrument for therapy decision-making and predicts the postprocedural risk associated with the two revascularization strategies: percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG). The score requires expert assessment and manual measurements of coronary angiograms for stenosis characterization. In this work we propose a deep learning workflow for automated stenosis detection to facilitate the calculation of the SYNTAX score. We use a region-based convolutional neural network for object detection, fine-tuned on a public dataset consisting of angiography frames with annotated stenotic regions. The model is evaluated on angiographic video sequences of complex CAD patients from the German Heart Center of the Charité University Hospital (DHZC), Berlin. We provide a customized graphical tool for cardiac experts that allows correction and segment annotation of the detected stenotic regions. The model reached a precision of 78.39% in the frame-wise object detection task on the clinical dataset. For the task of predicting the presence of coronary stenoses at the patient level, the model achieved a sensitivity of 49.55% for stenoses of all degrees and 59.18% for stenoses of relevant degrees (>75%). The results suggest that our stenosis detection tool can facilitate visual assessment of CAD in angiography data and encourage to investigate further development towards fully automated calculation of the SYNTAX score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10690
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 13363
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang H, Naghavi M, Allen C, Barber RM. Global, regional, and national life expectancy, allcause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459–544.

    Google Scholar 

  2. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;(25):3481– 8.

    Google Scholar 

  3. Holmes DR, Rich JB, Zoghbi WA, Mack MJ. The heart team of cardiovascular care. J Am Coll Cardiol. 2013;61(9):903–7.

    Google Scholar 

  4. Rigatelli G, Gianese F, Zuin M. Modern atlas of invasive coronary angiography views: a practical approach for fellows and young interventionalists. Int J Cardiovasc Imaging. 2021.

    Google Scholar 

  5. Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U et al. ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87–165.

    Google Scholar 

  6. Sianos G, Morel MA, Kappetein AP, Morice MC. The SYNTAX score: an angiographic tool grading the complexity of coronary artery disease. Eurointervention. 2005.

    Google Scholar 

  7. Zhu X, Cheng Z, Wang S, Chen X, Lu G. Coronary angiography image segmentation based on PSPNet. Comput Methods Programs Biomed. 2021;200:105897.

    Google Scholar 

  8. Iyer K, Najarian CP, Fattah AA, Arthurs CJ, Soroushmehr SMR, Subban V et al. AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography. Sci Rep. 2021;11(1):18066.

    Google Scholar 

  9. Zhao C, Bober R, Tang H, Tang J, Dong M, Zhang C et al. Semantic segmentation to extract coronary arteries in invasive coronary angiograms. J Adv Comput Math. 2022;9:76–85.

    Google Scholar 

  10. Zhao C, Vij A, Malhotra S, Tang J, Tang H, Pienta D et al. Automatic extraction and stenosis evaluation of coronary arteries in invasive coronary angiograms. Comput Biol Med. 2021;136:104667.

    Google Scholar 

  11. Zhou Y, Guo H, Song J, Chen Y, Wang J. Review of vessel segmentation and stenosis classification in X-ray coronary angiography. Processing WCSP. 2021:1–5.

    Google Scholar 

  12. Danilov VV, Klyshnikov KY, Gerget OM, Kutikhin AG, Ganyukov VI, Frangi AF et al. Real-time coronary artery stenosis detection based on modern neural networks. Sci Rep. 2021;11(1):7582.

    Google Scholar 

  13. Ling H, Chen B, Guan R, Xiao Y, Yan H, Chen Q et al. Deep learning model for coronary angiography. J Cardiovasc Transl Res. 2023;16(4):896–904.

    Google Scholar 

  14. Pang K, Ai D, Fang H, Fan J, Song H, Yang J. Stenosis-DetNet: Sequence consistencybased stenosis detection for X-ray coronary angiography. Computerized Medical Imaging and Graphics. 2021;89:101900.

    Google Scholar 

  15. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst. 2015;28.

    Google Scholar 

  16. Lin TY, Maire M, Belongie S, Bourdev L, Garshick R, Hays J et al. Microsoft COCO: common objects in context. Proc ECCV. 2014:740–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Popp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Popp, A. et al. (2024). Segment-wise Evaluation in X-ray Angiography Stenosis Detection. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_36

Download citation

Publish with us

Policies and ethics