Abstract
While the DICOM standard facilitates a consistent approach to image data, integrating clinical and patient data from unstructured formats into medical image analysis platforms remains a complex challenge. To address this problem, we propose a web-based tool for interactive harmonization of semi-structured data tables and facilitating their integration into image analysis platforms such as Kaapana. Harmonization is performed with respect to a given schema. The approach supports researchers throughout the data lifecycle by enabling the interactive creation of migration scripts to extend the life of data in changing environments. The proposed tool helps researchers enhance data utilization in the medical field by making unharmonized data available. Despite its potential, the proposed solution has limitations when handling large data sets and faces potential security issues due to the use of JavasScript. Nevertheless, it offers considerable benefits by assisting in data harmonization, enabling the use of data from various sources, and therefore reducing costs by eliminating the need for redundant data collection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boyd M, Kittivoravitkul S, Lazanitis C, McBrien P, Rizopoulos N. AutoMed: a BAV data integration system for heterogeneous data sources. 2004. Ed. by Persson A, Stirna J:82–97.
Hillenbrand A, Störl U, Nabiyev S, Klettke M. Self-adapting data migration in the context of schema evolution in NoSQL databases. Distrib Parallel Databases. 2022;40(1):5–25.
Jia T, Zhao X, Wang Z, Gong D, Ding G. Model transformation and data migration from relational database to MongoDB. Proc IEEE. 2016:60–7.
Masiulis K, JulitorK, Karlsson H, Tordgeman J, Fiddler J, Butola A et al. UgnisSoftware. Computer Program. 2023.
Winding B, songkeith, Kowalski M, Flavien, Akker Kvd, Cramer S et al. benwinding/reactadmin- import-csv. Computer Program. 2023.
Matantsev N, Stehr T, Arney T, Bismut D, Dahl TKK, Multani PS et al. beamworks/reactcsv- importer. Computer Program. 2023.
Scherer J, Kades K, Gao H, Schader P, Parekh K, Parampottupadam S et al. kaapana/kaapana: v0.2.0. Computer Program. Version 0.2.0. 2022.
Agarwal M. Patient survival prediction. 2021.
Welch ML, Kim S, Hope A, Huang SH, Lu Z, Marsilla J et al. Computed tomography images from large head and neck cohort (RADCURE). Version 1. . 2023.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Kulla, L., Schader, P., Maier-Hein, K., Nolden, M. (2024). Harmonized Import of Clinical Research Data for the Open Source Image Analysis Platform Kaapana. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_31
Download citation
DOI: https://doi.org/10.1007/978-3-658-44037-4_31
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-44036-7
Online ISBN: 978-3-658-44037-4
eBook Packages: Computer Science and Engineering (German Language)