Advanced Deep Learning for Skin Histoglyphics at Cellular Level | SpringerLink
Skip to main content

Advanced Deep Learning for Skin Histoglyphics at Cellular Level

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2024 (BVM 2024)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

  • 933 Accesses

Abstract

In dermatology, the histological examination of skin cross-sections is essential for skin cancer diagnosis and treatment planning. However, the complete coverage of tissue abnormalities is not possible due to time constraints as well as the sheer number of cell groups. We present an automatic segmentation approach of seven tissue classes: vessels, perspiration glands, hair follicles, sebaceous glands, tumor tissue, epidermis and fatty tissue, for a fast processing of the large datasets. Hence, the initial size of the data lends itself to the use of patch-based deep learning models, resulting in good IoU score of 94.2 percent for the cancerous tissue and overall IoU score of 83.6 percent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10690
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 13363
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. WCRF International: skin cancer statistics. 2022.

    Google Scholar 

  2. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM et al. Dermatologist-level classification of skin cancer with deep neural networks. Nat. 2017;542(7639):115–8.

    Google Scholar 

  3. Saginala K, Barsouk A, Aluru JS, Rawla P, Barsouk A. Epidemiology of melanoma. Med Sci. 2021;9(4):63.

    Google Scholar 

  4. Tronnier M, Smolle J,Wolff HH. Ultraviolet irradiation induces acute changes in melanocytic nevi. J Inv Dermatol. 1995;104(4):475–8.

    Google Scholar 

  5. Serag A, Ion-Margineanu A, Qureshi H, McMillan R, Saint Martin MJ, Diamond J et al. Translational AI and deep learning in diagnostic pathology. Front Med. 2019;6:185.

    Google Scholar 

  6. Kather JN,Weis CA, Bianconi F, Melchers SM, Schad LR, Gaiser T et al. Multi-class texture analysis in colorectal cancer histology. Sci Rep. 2016;6(1):27988.

    Google Scholar 

  7. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Proc MICCAI. Springer. 2015:234–41.

    Google Scholar 

  8. Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object detection. Proc IEEE. 2017:2980–8.

    Google Scholar 

  9. Zhao H, Shi J, Qi X,Wang X, Jia J. Pyramid scene parsing network. Proc IEEE. 2017:2881– 90.

    Google Scholar 

  10. Wang L, Shao A, Huang F, Liu Z, Wang Y, Huang X et al. Deep learning-based semantic segmentation of non-melanocytic skin tumors in whole-slide histopathological images. Exp Dermatol. 2023.

    Google Scholar 

  11. Liu Y, He Q, Duan H, Shi H, Han A, He Y. Using sparse patch annotation for tumor segmentation in histopathological images. Sensors. 2022;22(16):6053.

    Google Scholar 

  12. Li YJ, Chou HH, Lin PC, Shen MR, Hsieh SY. A novel deep learning-based algorithm combining histopathological features with tissue areas to predict colorectal cancer survival from whole-slide images. J Transl Med. 2023;21(1):731.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kreher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kreher, R. et al. (2024). Advanced Deep Learning for Skin Histoglyphics at Cellular Level. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_20

Download citation

Publish with us

Policies and ethics