Displacement Representation for Conditional Point Cloud Registration | SpringerLink
Skip to main content

Displacement Representation for Conditional Point Cloud Registration

HeatReg Applied to 2D/3D Freehand Ultrasound Reconstruction

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2024 (BVM 2024)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

  • 886 Accesses

Abstract

In this work, we create a point cloud-based framework based on Free Point Transformers (FPTs) for 2D/3D registration of untracked ultrasound (US) sweeps. Applications include outpatient follow-up assessments and intraoperative scenarios like ultrasound-guided navigation. Through a simple modification in displacement prediction representation, we enhance registration results by more than 25% w.r.t. prior work while preserving the model-free paradigm, maintaining network parameters, and only marginally increasing computation time. Experiments on the SegThy dataset, featuring manually segmented anatomies on MR (magnetic resoncance) scans in the thyroid gland area, demonstrate our method’s effectiveness. We simulate numerous realistic ultrasound sweeps, aiming to register them back into the MR volume. Beyond methodological contributions, our fast registration framework strives to enable clinically capable systems, advancing ultrasound-guided surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10690
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 13363
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Prevost R, Salehi M, Jagoda S, Kumar N, Sprung J, Ladikos A et al. 3D freehand ultrasound without external tracking using deep learning. MedIA. 2018;48:187–202.

    Google Scholar 

  2. Wein W, Lupetti M, Zettinig O, Jagoda S, Salehi M, Markova V et al. Three-dimensional thyroid assessment from untracked 2D ultrasound clips. Proc MICCAI. 2020:514–23.

    Google Scholar 

  3. Ferrante E, Paragios N. Non-rigid 2D-3D medical image registration using Markov random fields. Proc MICCAI. 2013:163–70.

    Google Scholar 

  4. Markova V, Ronchetti M, Wein W, Zettinig O, Prevost R. Global Multi-modal 2D/3D registration via Local descriptors learning. Proc MICCAI. 2022:269–79.

    Google Scholar 

  5. Baum ZM, Hu Y, Barratt DC. Real-time multimodal image registration with partial intraoperative point-set data. MedIA. 2021;74.

    Google Scholar 

  6. Qi CR, Su H, Mo K, Guibas LJ. Pointnet: deep learning on point sets for 3d classification and segmentation. Proc CVPR. 2017:652–60.

    Google Scholar 

  7. Sun X, Xiao B, Wei F, Liang S, Wei Y. Integral human pose regression. Proc ECCV. 2018:529–45.

    Google Scholar 

  8. Krönke M, Eilers C, Dimova D, Köhler M, Buschner G, Schweiger L et al. Tracked 3D ultrasound and deep neural network-based thyroid segmentation reduce interobserver variability in thyroid volumetry. PloS One. 2022;17(7).

    Google Scholar 

  9. Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH. nnU-net: a self-configuring method for deep learning-based biomedical image segmentation.Nat Methods. 2021;18(2):203– 11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lasse Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hansen, L., Lichtenstein, J., Heinrich, M.P. (2024). Displacement Representation for Conditional Point Cloud Registration. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_14

Download citation

Publish with us

Policies and ethics