Segmentation-guided Medical Image Registration | SpringerLink
Skip to main content

Segmentation-guided Medical Image Registration

Quality Awareness using Label Noise Correctionn

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2024 (BVM 2024)

Abstract

Medical image registration methods can strongly benefit from anatomical labels, which can be provided by segmentation networks at reduced labeling effort. Yet, label noise may adversely affect registration performance. In this work, we propose a quality-aware segmentation-guided registration method that handles such noisy, i.e., low-quality, labels by self-correcting them using Confident Learning. Utilizing NLST and in-house acquired abdominal MR images, we show that our proposed quality-aware method effectively addresses the drop in registration performance observed in quality-unaware methods. Our findings demonstrate that incorporating an appropriate label-correction strategy during training can reduce labeling efforts, consequently enhancing the practicality of segmentation-guided registration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10690
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 13363
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Spieker V, Eichhorn H, Hammernik K, Rueckert D, Preibisch C, Karampinos DC et al. Deep learning for retrospective motion correction in MRI: a comprehensive review. IEEE Trans Med Imaging. 2023.

    Google Scholar 

  2. Heinrich MP, Papież BW. Image registration with sliding motion. Handbook of Medical Image Computing and Computer Assisted Intervention. Elsevier, 2020:293–318.

    Google Scholar 

  3. Ruhaak J, Polzin T, Heldmann S, Simpson IJA, Handels H, Modersitzki J et al. Estimation of large motion in lung CT by integrating regularized keypoint correspondences into dense deformable registration. IEEE Trans Med Imaging. 2017;36(8):1746–57.

    Google Scholar 

  4. Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV. VoxelMorph: a learning framework for deformable medical image registration. 2018.

    Google Scholar 

  5. Xu Z, Niethammer M. DeepAtlas: joint semi-supervised learning of image registration and segmentation. 2019.

    Google Scholar 

  6. Karimi D, Dou H, Warfield SK, Gholipour A. Deep learning with noisy labels: exploring techniques and remedies in medical image analysis. Med Image Anal. 2020;65:101759.

    Google Scholar 

  7. Chen X, Xia Y, Ravikumar N, Frangi AF. Joint segmentation and discontinuity-preserving deformable registration: application to cardiac cine-MR images. 2022.

    Google Scholar 

  8. Xu Z, Lu D, Luo J, Wang Y, Yan J, Ma K et al. Anti-interference from noisy labels: mean-teacher-assisted confident learning for medical image segmentation. IEEE Trans Med Imaging. 2022.

    Google Scholar 

  9. Northcutt C, Jiang L, Chuang I. Confident learning: estimating uncertainty in dataset labels. J Artif Int Res. 2021;70:1373–411.

    Google Scholar 

  10. Luo Y, Zhu J, Li M,Ren Y, Zhang B. Smooth neighbors on teacher graphs for semi-supervised learning. PROC IEEE CVPR. 2018:8896–905.

    Google Scholar 

  11. Aberle DR, Berg CD, Black WC, Church TR, Fagerstrom RM, Galen B et al. The national lung screening trial: overview and study design. Radiol. 2011;258(1):243–53.

    Google Scholar 

  12. Hering A, Hansen L, Mok TCW, Chung ACS, Siebert H, Häger S et al. Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning. 2022.

    Google Scholar 

  13. Yao J, Zhang Y, Zheng S, Goswami M, Prasanna P, Chen C. Learning to segment from noisy annotations: a spatial correction approach. Proc ICLR. 2023.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varsha Raveendran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raveendran, V., Spieker, V., Braren, R.F., Karampinos, D.C., Zimmer, V.A., Schnabel, J.A. (2024). Segmentation-guided Medical Image Registration. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_13

Download citation

Publish with us

Policies and ethics