Classification of Vascular Malformations Based on T2 STIR Magnetic Resonance Imaging | SpringerLink
Skip to main content

Classification of Vascular Malformations Based on T2 STIR Magnetic Resonance Imaging

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2022

Part of the book series: Informatik aktuell ((INFORMAT))

  • 1652 Accesses

Zusammenfassung

Vascular malformations (VMs) are a rare condition. They can be categorized into high-flow and low-flow VMs, which is a challenging task for radiologists. In this work, a very heterogeneous set of MRI images with only rough annotations are used for classification with a convolutional neural network. The main focus is to describe the challenging data set and strategies to deal with such data in terms of preprocessing, annotation usage and choice of the network architecture. We achieved a classification result of 89.47% F1-score with a 3D ResNet 18.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8552
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10691
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. ISSVA classification of vascular anomalies. https://www.issva.org/classification. Accessed: 2021-10-24. International Society for the Study of Vascular Anomalies, 2018.

  2. Sierre S, Teplisky D, Lipsich J. Vascular malformations: an update on imaging and management. Arch Argent Pediatr. 2016;114 2:167–76.

    Google Scholar 

  3. Jia Deng, Wei Dong, Socher R, Li-Jia Li, Kai Li, Li Fei-Fei. ImageNet: a large-scale hierarchical image database. Proc IEEE CVPR. IEEE, 2009:248–55.

    Google Scholar 

  4. Kay W, Carreira J, Simonyan K, Zhang B, Hillier C, Vijayanarasimhan S et al. The kinetics human action video dataset. 2017.

    Google Scholar 

  5. Hara K, Kataoka H, Satoh Y. Can Spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet? Proc IEEE CVPR. IEEE, 2018:6546–55.

    Google Scholar 

  6. Tran D, Wang H, Torresani L, Ray J, LeCun Y, Paluri M. A closer look at spatiotemporal convolutions for action recognition. Proc IEEE CVPR. IEEE, 2018:6450–9.

    Google Scholar 

  7. Kingma DP, Ba J. Adam: A method for stochastic optimization. Proc ICLR. 2014:1–15.

    Google Scholar 

  8. Pérez-García F, Sparks R, Ourselin S. TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput Methods Programs Biomed. 2021;208:106236.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Palm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nunes, D.W., Hammer, M., Hammer, S., Uller, W., Palm, C. (2022). Classification of Vascular Malformations Based on T2 STIR Magnetic Resonance Imaging. In: Maier-Hein, K., Deserno, T.M., Handels, H., Maier, A., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2022. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-36932-3_57

Download citation

Publish with us

Policies and ethics