Zusammenfassung
Vascular malformations (VMs) are a rare condition. They can be categorized into high-flow and low-flow VMs, which is a challenging task for radiologists. In this work, a very heterogeneous set of MRI images with only rough annotations are used for classification with a convolutional neural network. The main focus is to describe the challenging data set and strategies to deal with such data in terms of preprocessing, annotation usage and choice of the network architecture. We achieved a classification result of 89.47% F1-score with a 3D ResNet 18.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Literatur
ISSVA classification of vascular anomalies. https://www.issva.org/classification. Accessed: 2021-10-24. International Society for the Study of Vascular Anomalies, 2018.
Sierre S, Teplisky D, Lipsich J. Vascular malformations: an update on imaging and management. Arch Argent Pediatr. 2016;114 2:167–76.
Jia Deng, Wei Dong, Socher R, Li-Jia Li, Kai Li, Li Fei-Fei. ImageNet: a large-scale hierarchical image database. Proc IEEE CVPR. IEEE, 2009:248–55.
Kay W, Carreira J, Simonyan K, Zhang B, Hillier C, Vijayanarasimhan S et al. The kinetics human action video dataset. 2017.
Hara K, Kataoka H, Satoh Y. Can Spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet? Proc IEEE CVPR. IEEE, 2018:6546–55.
Tran D, Wang H, Torresani L, Ray J, LeCun Y, Paluri M. A closer look at spatiotemporal convolutions for action recognition. Proc IEEE CVPR. IEEE, 2018:6450–9.
Kingma DP, Ba J. Adam: A method for stochastic optimization. Proc ICLR. 2014:1–15.
Pérez-García F, Sparks R, Ourselin S. TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput Methods Programs Biomed. 2021;208:106236.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Nunes, D.W., Hammer, M., Hammer, S., Uller, W., Palm, C. (2022). Classification of Vascular Malformations Based on T2 STIR Magnetic Resonance Imaging. In: Maier-Hein, K., Deserno, T.M., Handels, H., Maier, A., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2022. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-36932-3_57
Download citation
DOI: https://doi.org/10.1007/978-3-658-36932-3_57
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-36931-6
Online ISBN: 978-3-658-36932-3
eBook Packages: Computer Science and Engineering (German Language)