Symbolische Lösung von Differentialgleichungen 1. Ordnung und 1. Grades Durch Heuristische Programmierung | SpringerLink
Skip to main content

Symbolische Lösung von Differentialgleichungen 1. Ordnung und 1. Grades Durch Heuristische Programmierung

  • Conference paper
GI — 6. Jahrestagung

Part of the book series: Informatik — Fachberichte ((INFORMATIK,volume 5))

  • 34 Accesses

Abstract

The problem of solving first order, first degree differential equations symbolically is characterized as a heuristic search process. An investigation into the problem of automatically solving such differential equations has resulted in a heuristic program, called EULE. The selection and the realization of the methods for EULE are based on a detailed analysis of the problem domain: the standard work of Kamke (1961), which is representative of the state of the knowledge of differential equations, was examined in three different respects: the collected methods of solution, the methods utilized for the collection of differential equations and the structure of these differential equations. The realization of the methods is based on this result and on defined principles which ensure the effectiveness of the program. The effectiveness of EULE can be characterized by the fact that EULE achieved a ‘rate of solution’ of 90% for Kamke’s representative collection of first order, first degree differential equations and a rate of 95% for Murphy’s (1960) representative collection. For two collections for training students EULE achieved a rate of 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7349
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • Brown, W.S. (1969): Rational Exponential Expressions and a Conjecture Concerning π and e”, Amer. Math. Monthly, vol. 76, S. 28–34

    Article  MathSciNet  MATH  Google Scholar 

  • Fateman, R.J. (1972): “Essays in Algebraic Simplification”, Report MAC TR-95, Project MAC, MIT, Cambridge, Mass.

    Google Scholar 

  • Ince, E.L. (1936): “Die Integration gewöhnlicher DGLen”, Bibliograph. Inst., Mannheim, HTB Nr. 67.

    Google Scholar 

  • Kamke, E. (1961): “Differentialgleichungen-Lösungsmethoden und Lösungen, 1. Gewöhnliche Differentialgleichungen”, Akad. Verl. Ges. Geest&Portig K.G., Leipzig, 7. Auflage.

    Google Scholar 

  • Moses J. (1967): “Symbolic Integration”, Report MAC TR-47, Project MAC, MIT, Cambridge, Mass.

    Google Scholar 

  • Moses, J. (1971a); “Symbolic Integration: The Stormy Decade”, Comm. of the ÀÔM, vol. 14, S. 548–560.

    MathSciNet  MATH  Google Scholar 

  • Moses, J. (1971b): “Algebraic Simplification: A Guide for the Perplexed”, Comm. of the ACM, vol. 14, S. 527–537.

    Article  MathSciNet  MATH  Google Scholar 

  • Moses, J. (1974): “The Evolution of Algebraic Manipulation Algorithms”, information Processing 1974, North Holland Publ. Comp., S. 483–488.

    Google Scholar 

  • Murphy, G.M. (1960): “Ordinary Differential Equations”, D. van Nostrand Comp., inc., Princeton, New Jersey.

    MATH  Google Scholar 

  • Richardson, P. (1968): “Some Undecidable Problems Involving Elementary Functions of a Real variable”, The J. of Symb. Logic, vol. 33, S. 514–520.

    Article  MATH  Google Scholar 

  • Schmidt, P. (1976a): “Automatic Symbolic Solution of Differential Equations of First Order and First Degree”, Proc. of the ACM Symp. on Symbolic and Algebraic Computation, Yorktown Heights, New York, 10–12 Aug. 1976.

    Google Scholar 

  • Schmidt, P. (1976b): “Maschinelle symbolische Lösung von Differential-gleichungen 1. Ordnung und 1. Grades”, Informatik Berichte, Universität Bonn, wird erscheinen.

    Google Scholar 

  • Slagle, J.R. (1963): “A Heuristic Program that Solves Symbolic Integration Problems in Freshman Calculus”, J. of the ACM, vol. 10, s. 507–520.

    Article  MATH  Google Scholar 

  • Spiegel, M.R. (1958): “Applied Differential Equations”, Englewood Cliffs, N.J., Prentice Hall, Inc.

    MATH  Google Scholar 

  • Vang, P.S. (1971): “Evaluation of Definite Integrals by Symbolic Manipulation”, Report MAC TR-92, Project MAC, MIT, Cambridge, Mass.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Schmidt, P. (1976). Symbolische Lösung von Differentialgleichungen 1. Ordnung und 1. Grades Durch Heuristische Programmierung. In: Neuhold, E.J. (eds) GI — 6. Jahrestagung. Informatik — Fachberichte, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95289-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95289-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07912-5

  • Online ISBN: 978-3-642-95289-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics