Abstract
The problem of solving first order, first degree differential equations symbolically is characterized as a heuristic search process. An investigation into the problem of automatically solving such differential equations has resulted in a heuristic program, called EULE. The selection and the realization of the methods for EULE are based on a detailed analysis of the problem domain: the standard work of Kamke (1961), which is representative of the state of the knowledge of differential equations, was examined in three different respects: the collected methods of solution, the methods utilized for the collection of differential equations and the structure of these differential equations. The realization of the methods is based on this result and on defined principles which ensure the effectiveness of the program. The effectiveness of EULE can be characterized by the fact that EULE achieved a ‘rate of solution’ of 90% for Kamke’s representative collection of first order, first degree differential equations and a rate of 95% for Murphy’s (1960) representative collection. For two collections for training students EULE achieved a rate of 100%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Literaturverzeichnis
Brown, W.S. (1969): Rational Exponential Expressions and a Conjecture Concerning π and e”, Amer. Math. Monthly, vol. 76, S. 28–34
Fateman, R.J. (1972): “Essays in Algebraic Simplification”, Report MAC TR-95, Project MAC, MIT, Cambridge, Mass.
Ince, E.L. (1936): “Die Integration gewöhnlicher DGLen”, Bibliograph. Inst., Mannheim, HTB Nr. 67.
Kamke, E. (1961): “Differentialgleichungen-Lösungsmethoden und Lösungen, 1. Gewöhnliche Differentialgleichungen”, Akad. Verl. Ges. Geest&Portig K.G., Leipzig, 7. Auflage.
Moses J. (1967): “Symbolic Integration”, Report MAC TR-47, Project MAC, MIT, Cambridge, Mass.
Moses, J. (1971a); “Symbolic Integration: The Stormy Decade”, Comm. of the ÀÔM, vol. 14, S. 548–560.
Moses, J. (1971b): “Algebraic Simplification: A Guide for the Perplexed”, Comm. of the ACM, vol. 14, S. 527–537.
Moses, J. (1974): “The Evolution of Algebraic Manipulation Algorithms”, information Processing 1974, North Holland Publ. Comp., S. 483–488.
Murphy, G.M. (1960): “Ordinary Differential Equations”, D. van Nostrand Comp., inc., Princeton, New Jersey.
Richardson, P. (1968): “Some Undecidable Problems Involving Elementary Functions of a Real variable”, The J. of Symb. Logic, vol. 33, S. 514–520.
Schmidt, P. (1976a): “Automatic Symbolic Solution of Differential Equations of First Order and First Degree”, Proc. of the ACM Symp. on Symbolic and Algebraic Computation, Yorktown Heights, New York, 10–12 Aug. 1976.
Schmidt, P. (1976b): “Maschinelle symbolische Lösung von Differential-gleichungen 1. Ordnung und 1. Grades”, Informatik Berichte, Universität Bonn, wird erscheinen.
Slagle, J.R. (1963): “A Heuristic Program that Solves Symbolic Integration Problems in Freshman Calculus”, J. of the ACM, vol. 10, s. 507–520.
Spiegel, M.R. (1958): “Applied Differential Equations”, Englewood Cliffs, N.J., Prentice Hall, Inc.
Vang, P.S. (1971): “Evaluation of Definite Integrals by Symbolic Manipulation”, Report MAC TR-92, Project MAC, MIT, Cambridge, Mass.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1976 Springer-Verlag Berlin · Heidelberg
About this paper
Cite this paper
Schmidt, P. (1976). Symbolische Lösung von Differentialgleichungen 1. Ordnung und 1. Grades Durch Heuristische Programmierung. In: Neuhold, E.J. (eds) GI — 6. Jahrestagung. Informatik — Fachberichte, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95289-0_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-95289-0_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-07912-5
Online ISBN: 978-3-642-95289-0
eBook Packages: Springer Book Archive