Sufficient Propagation Euclidean Distance Transformation | SpringerLink
Skip to main content

Sufficient Propagation Euclidean Distance Transformation

  • Conference paper
Mustererkennung 1996

Part of the book series: Informatik aktuell ((INFORMAT))

  • 116 Accesses

Abstract

A new Euclidean distance transformation (EDT) for binary images in n is introduced. We sequentialize the parallel method of Huang and Mitchell by restricting the propagation to sufficient propagation paths. Tests in 2 and in 3 show that the algorithm is significantly faster than other well known signed and unsigned EDTs. Combined with the method of Saito and Toriwaki, it also yields a fast parallel EDT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7349
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arcelli C, Sanniti di Baja G (1993) Euclidean skeleton via centre-of-maximal-disc extraction. Image and Vision Computing 11: 163–173

    Article  Google Scholar 

  2. Arcelli C, Senno L (1993) Shape Features in Distance Transforms. Vision Geometry 3: 49–60

    Google Scholar 

  3. Boigefors G (1984) Distance transforms in arbitrary dimensions. Computer Vision, Graphics, and Image Processing 27: 321–345

    Article  Google Scholar 

  4. Breu H, Gil J, Kirkpatrick D, Werman M (1995) Linear time Euclidean distance transform algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 17: 529–533

    Article  Google Scholar 

  5. Chen L, Chuang HYH (1994) A fast algorithm for Euclidean distance maps of a 2-D binary image. Information Processing Letters 51: 25–29

    Article  MATH  MathSciNet  Google Scholar 

  6. Danielsson PE (1980) Euclidean distance mapping. Computer Vision, Graphics and Image Processing 14: 227–248

    Article  Google Scholar 

  7. Eggers H (1996) Parallel Euclidean Distance Transformations in gn . Pattern Recognition Letters 17: 751–757

    Article  Google Scholar 

  8. Eggers H (1996) Two Fast Euclidean Distance Transformations in 2 based on sufficient propagation, in: Hamburger Beiträge zur Angewandten Mathematik, Reihe A, Preprint 105, to appear in: Computer Vision and Image Understanding

    Google Scholar 

  9. Huang CT, Mitchell OR (1994) A Euclidean Distance Transform Using Grayscale Morphology Decomposition. IEEE Transactions onf Pattern Analysis and Machine Intelligence 16: 443–448

    Article  Google Scholar 

  10. Klein F, Kübler O (1987) Euclidean Distance Transformations and model-guided image interpretation. Pattern Recognition Letters 5: 19–29

    Article  Google Scholar 

  11. Leymarie F, Levine MD (1992) Fast Raster Scan Distance Propagation on the Discrete Rectangular Lattice. CVGIP: Image Understanding 55: 84–94

    Article  MATH  Google Scholar 

  12. Lohmann G (1995) A New Method of Extracting Closed Contours Using Maximal Discs. Proc. 6th Intern. Conf. on CAIP ’95, Prague, Czech Republic, in: Lecture Notes in Computer Science 970: 472–479

    Google Scholar 

  13. Ragnemalm I (1993) The Euclidean distance transform in arbitrary dimensions. Pattern Recognition Letters 14: 883–888

    Article  MATH  Google Scholar 

  14. Ragnemalm I (1992) Neighborhoods for Distance Transformations using Ordered Propagation. CVGIP: Image Understanding 56: 399–409

    Article  MATH  Google Scholar 

  15. Saito T, Toriwaki JI (1994) New Algorithms for Euclidean Distance Transformation of an n-dimensional digitized picture with applications. Pattern Recognition 27: 1551–1565

    Article  Google Scholar 

  16. Shih F, PU C (1995) A Skeletonization Algorithm by Maxima Tracking on Euclidean Distance Transform. Pattern Recognition 28: 331–341

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eggers, H. (1996). Sufficient Propagation Euclidean Distance Transformation. In: Jähne, B., Geißler, P., Haußecker, H., Hering, F. (eds) Mustererkennung 1996. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80294-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80294-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61585-9

  • Online ISBN: 978-3-642-80294-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics